Distributive Laws/Set Theory/Examples/A cap B cap (C cup D) subset of (A cap D) cup (B cap C)

From ProofWiki
Jump to navigation Jump to search

Example of Use of Distributive Laws of Set Theory

Let:

$P = A \cap B \cap \paren {C \cup D}$
$Q = \paren {A \cap D} \cup \paren {B \cap C}$

Then:

$P \subseteq Q$


Corollary

$P = Q$

if and only if:

both $B \cap C \subseteq A$ and $A \cap D \subseteq B$


Proof

\(\ds P\) \(=\) \(\ds A \cap B \cap \paren {C \cup D}\)
\(\ds \) \(=\) \(\ds \paren {A \cap B \cap C} \cup \paren {A \cap B \cap D}\) Intersection Distributes over Union


Let $P$ be expressed as:

$P = X \cup Y$

where:

$X = A \cap B \cap D$
$Y = A \cap B \cap C$


Then:

\(\ds X\) \(=\) \(\ds A \cap B \cap D\)
\(\ds \) \(\subseteq\) \(\ds A \cap D\) Intersection is Subset
\(\ds \) \(\subseteq\) \(\ds Q\) Set is Subset of Union

and:

\(\ds Y\) \(=\) \(\ds A \cap B \cap C\)
\(\ds \) \(\subseteq\) \(\ds B \cap C\) Intersection is Subset
\(\ds \) \(\subseteq\) \(\ds Q\) Set is Subset of Union

and so:

\(\ds X \cup Y\) \(\subseteq\) \(\ds Q\) Union is Smallest Superset
\(\ds \leadsto \ \ \) \(\ds P\) \(\subseteq\) \(\ds Q\)

$\blacksquare$


Sources