Divisor of Integer/Examples
Jump to navigation
Jump to search
Examples of Divisors of Integers
$2$ divides $4$
- $2 \divides 4$
$3$ divides $12$
- $3 \divides 12$
$4$ divides $\paren {-12}$
- $4 \divides \paren {-12}$
$2$ does not divide $5$
- $2 \nmid 5$
$3$ does not divide $4$
- $3 \nmid 4$
$3$ does not divide $10$
- $3 \nmid 10$
$2$ divides $n \paren {n + 1}$
Let $n$ be an integer.
Then:
- $2 \divides n \paren {n + 1}$
$3$ divides $n \paren {n + 1} \paren {n + 2}$
Let $n$ be an integer.
Then:
- $3 \divides n \paren {n + 1} \paren {n + 2}$
$6$ divides $n \paren {n + 1} \paren {n + 2}$
Let $n$ be an integer.
Then:
- $6 \divides n \paren {n + 1} \paren {n + 2}$
$6$ divides $7^n - 1$
Let $n \in \Z_{\ge 0}$ be a positive integer.
Then:
- $6 \divides 7^n - 1$
where $\divides$ denotes divisibility.
$63$ divides $8^{2 n} - 1$
Let $n \in \Z_{\ge 0}$ be a positive integer.
Then:
- $63 \divides 8^{2 n} - 1$
where $\divides$ denotes divisibility.
$80$ divides $9^{2 n} - 1$
Let $n \in \Z_{\ge 0}$ be a non-negative integer.
Then:
- $80 \divides 9^{2 n} - 1$
where $\divides$ denotes divisibility.