Divisor of Integer/Examples/7 divides 2^3n - 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n$ be an integer such that $n \ge 1$.

Then:

$7 \divides 2^{3 n} - 1$

where $\divides$ indicates divisibility .


Proof

The proof proceeds by induction.

For all $n \in \Z_{\ge 1}$, let $\map P n$ be the proposition:

$7 \divides 2^{3 n} - 1$


Basis for the Induction

$\map P 1$ is the case:

\(\ds 2^{3 \times 1} - 1\) \(=\) \(\ds 2^3 - 1\)
\(\ds \) \(=\) \(\ds 8 - 1\)
\(\ds \) \(=\) \(\ds 7\)
\(\ds \leadsto \ \ \) \(\ds 7\) \(\divides\) \(\ds 2^{3 \times 1} - 1\)

Thus $\map P 1$ is seen to hold.


This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.


So this is the induction hypothesis:

$7 \divides 2^{3 k} - 1$


from which it is to be shown that:

$7 \divides 2^{3 \paren {k + 1} } - 1$


Induction Step

This is the induction step:

\(\ds 2^{3 \paren {k + 1} } - 1\) \(=\) \(\ds 2^{3 k} \times 2^3 - 1\)
\(\ds \) \(=\) \(\ds \paren {2^{3 k} - 1 + 1} \times 2^3 - 1\)
\(\ds \) \(=\) \(\ds \paren {2^{3 k} - 1} \times 2^3 + 2^3 - 1\)
\(\ds \) \(=\) \(\ds 7 r \times 2^3 + 7\) where $7 r = 2^{3 k} - 1$: by the induction hypothesis $7 \divides 2^{3 k} - 1$
\(\ds \) \(=\) \(\ds 7 \paren {2^3 r + 1}\)
\(\ds \leadsto \ \ \) \(\ds 7\) \(\divides\) \(\ds 2^{3 \paren {k + 1} } - 1\) Definition of Divisor of Integer


So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\forall n \in \Z_{\ge 1}: 7 \divides 2^{3 n} - 1$

$\blacksquare$


Sources