Equivalence Classes of Dipper Relation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m \in \N$ be a natural number.

Let $n \in \N_{>0}$ be a non-zero natural number.


Let $\RR_{m, n}$ be the dipper relation on $\N$:

$\forall x, y \in \N: x \mathrel {\RR_{m, n} } y \iff \begin {cases} x = y \\ m \le x < y \text { and } n \divides \paren {y - x} \\ m \le y < x \text { and } n \divides \paren {x - y} \end {cases}$


The equivalence classes of $\RR_{m, n}$ are:

$\eqclass x {\RR_{m, n} } = \begin {cases} \set x & : x < m \\ \set {y \in \N: \paren {m \le y} \land \paren {\exists k \in \Z: x = y + k n} } & : x \ge m \end {cases}$


Thus the classes are:

\(\ds \eqclass 0 {\RR_{m, n} }\) \(=\) \(\ds \set 0\)
\(\ds \eqclass 1 {\RR_{m, n} }\) \(=\) \(\ds \set 1\)
\(\ds \) \(\vdots\) \(\ds \)
\(\ds \eqclass {m - 1} {\RR_{m, n} }\) \(=\) \(\ds \set {m - 1}\)
\(\ds \eqclass m {\RR_{m, n} }\) \(=\) \(\ds \set {m, m + n, m + 2 n, m + 3 n, \ldots}\)
\(\ds \eqclass {m + 1} {\RR_{m, n} }\) \(=\) \(\ds \set {m + 1, m + n + 1, m + 2 n + 1, m + 3 n + 1, \ldots}\)
\(\ds \) \(\vdots\) \(\ds \)
\(\ds \eqclass {m + n - 1} {\RR_{m, n} }\) \(=\) \(\ds \set {m + n - 1, m + 2 n - 1, m + 3 n - 1, m + 4 n - 1, \ldots}\)

and it is seen that there are exactly $m + n$ such equivalence classes.


Proof

From Dipper Relation is Equivalence Relation we have that $\RR_{m, n}$ is indeed an equivalence relation.


Let $x < m$.

Then by definition:

$y \in \eqclass x {\RR_{m, n} } \iff x = y$

and so:

$\eqclass x {\RR_{m, n} } = \set x$


Let $m \le x$.

Let $x \mathrel {\RR_{m, n} } y$.

First we note that $m \le y$.


Let $x = y$.

Then $y \in \eqclass x {\RR_{m, n} }$ immediately, and:

$x = y + 0 \times n$

That is:

$\exists k \in \Z: x = y + k n$

where in this instance $k = 0$.


Let $x > y$.

We have that:

\(\ds n\) \(\divides\) \(\ds \paren {x - y}\)
\(\ds \leadsto \ \ \) \(\ds \exists k \in \Z: \, \) \(\ds k n\) \(=\) \(\ds x - y\)
\(\ds x\) \(=\) \(\ds y + k n\)


Let $x < y$.

We have that:

\(\ds n\) \(\divides\) \(\ds \paren {y - x}\)
\(\ds \leadsto \ \ \) \(\ds \exists k' \in \Z: \, \) \(\ds k' n\) \(=\) \(\ds y - x\)
\(\ds x\) \(=\) \(\ds y - k' n\)
\(\ds x\) \(=\) \(\ds y + k n\) where $k = -k'$


Hence when $m \le x$, we have that:

$\eqclass x {\RR_{m, n} } = \set {y \in \N: \paren {m \le y} \land \paren {\exists k \in \Z: x = y + k n} }$

$\blacksquare$