Equivalence of Definitions of Boolean Algebra
Theorem
The following definitions of the concept of Boolean Algebra are equivalent:
Definition 1
A Boolean algebra is an algebraic system $\struct {S, \vee, \wedge, \neg}$, where $\vee$ and $\wedge$ are binary, and $\neg$ is a unary operation.
Furthermore, these operations are required to satisfy the following axioms:
\((\text {BA}_1 0)\) | $:$ | $S$ is closed under $\vee$, $\wedge$ and $\neg$ | |||||||
\((\text {BA}_1 1)\) | $:$ | Both $\vee$ and $\wedge$ are commutative | |||||||
\((\text {BA}_1 2)\) | $:$ | Both $\vee$ and $\wedge$ distribute over the other | |||||||
\((\text {BA}_1 3)\) | $:$ | Both $\vee$ and $\wedge$ have identities $\bot$ and $\top$ respectively | |||||||
\((\text {BA}_1 4)\) | $:$ | $\forall a \in S: a \vee \neg a = \top, a \wedge \neg a = \bot$ |
Definition 2
A Boolean algebra is an algebraic system $\struct {S, \vee, \wedge, \neg}$, where $\vee$ and $\wedge$ are binary, and $\neg$ is a unary operation.
Furthermore, these operations are required to satisfy the following axioms:
\((\text {BA}_2 0)\) | $:$ | Closure: | \(\ds \forall a, b \in S:\) | \(\ds a \vee b \in S \) | |||||
\(\ds a \wedge b \in S \) | |||||||||
\(\ds \neg a \in S \) | |||||||||
\((\text {BA}_2 1)\) | $:$ | Commutativity: | \(\ds \forall a, b \in S:\) | \(\ds a \vee b = b \vee a \) | |||||
\(\ds a \wedge b = b \wedge a \) | |||||||||
\((\text {BA}_2 2)\) | $:$ | Associativity: | \(\ds \forall a, b, c \in S:\) | \(\ds a \vee \paren {b \vee c} = \paren {a \vee b} \vee c \) | |||||
\(\ds a \wedge \paren {b \wedge c} = \paren {a \wedge b} \wedge c \) | |||||||||
\((\text {BA}_2 3)\) | $:$ | Absorption Laws: | \(\ds \forall a, b \in S:\) | \(\ds \paren {a \wedge b} \vee b = b \) | |||||
\(\ds \paren {a \vee b} \wedge b = b \) | |||||||||
\((\text {BA}_2 4)\) | $:$ | Distributivity: | \(\ds \forall a, b, c \in S:\) | \(\ds a \wedge \paren {b \vee c} = \paren {a \wedge b} \vee \paren {a \wedge c} \) | |||||
\(\ds a \vee \paren {b \wedge c} = \paren {a \vee b} \wedge \paren {a \vee c} \) | |||||||||
\((\text {BA}_2 5)\) | $:$ | Identity Elements: | \(\ds \forall a, b \in S:\) | \(\ds \paren {a \wedge \neg a} \vee b = b \) | |||||
\(\ds \paren {a \vee \neg a} \wedge b = b \) |
Proof
Definition 1 implies Definition 2
Let $\struct {S, \vee, \wedge, \neg}$ be an algebraic system which satisfies the criteria of Definition 1.
- Axiom $(\text {BA}_2 \ 0)$
From Axiom $(\text {BA}_1 \ 0)$, we have that $\struct {S, \vee, \wedge, \neg}$ is closed under $\vee$, $\wedge$ and $\neg$.
That is:
- $\forall a, b \in S: a \vee b \in S$
- $\forall a, b \in S: a \wedge b \in S$
- $\forall a \in S: \neg a \in S$
- Axiom $(\text {BA}_2 \ 1)$
From Axiom $(\text {BA}_1 \ 1)$, we have that $\vee$ and $\wedge$ are commutative on $S$.
That is:
- $\forall a, b \in S: a \vee b = b \vee a$
- $\forall a, b \in S: a \wedge b = b \wedge a$
- Axiom $(\text {BA}_2 \ 2)$
From Operations of Boolean Algebra are Associative:
- $\forall a, b, c \in S: a \vee \paren {b \vee c} = \paren {a \vee b} \vee c$
- $\forall a, b, c \in S: a \wedge \paren {b \wedge c} = \paren {a \wedge b} \wedge c$
- Axiom $(\text {BA}_2 \ 3)$
From Absorption Laws (Boolean Algebras):
For all $a, b \in S$:
- $a = a \vee \paren {a \wedge b}$
- $a = a \wedge \paren {a \vee b}$
The specific format in which these results are expressed in axiom $(\text {BA}_2 \ 3)$ follow from Axiom $(\text {BA}_2 \ 1)$: $\vee$ and $\wedge$ are commutative on $S$.
- Axiom $(\text {BA}_2 \ 4)$
From Axiom $(\text {BA}_1 \ 2)$, we have that both $\vee$ and $\wedge$ distribute over the other.
Hence:
- $\forall a, b, c \in S: a \wedge \paren {b \vee c} = \paren {a \wedge b} \vee \paren {a \wedge c}$
- $\forall a, b, c \in S: a \vee \paren {b \wedge c} = \paren {a \vee b} \wedge \paren {a \vee c}$
- Axiom $(\text {BA}_2 \ 5)$
We have:
\(\ds \paren {a \wedge \neg a} \vee b\) | \(=\) | \(\ds \bot \vee b\) | Boolean Algebra: Axiom $(\text {BA}_1 \ 4)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds b\) | Boolean Algebra: Axiom $(\text {BA}_1 \ 3)$ |
\(\ds \paren {a \vee \neg a} \wedge b\) | \(=\) | \(\ds \top \wedge b\) | Boolean Algebra: Axiom $(\text {BA}_1 \ 4)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds b\) | Boolean Algebra: Axiom $(\text {BA}_1 \ 3)$ |
All axioms are fulfilled.
$\Box$
Definition 2 implies Definition 1
Let $\struct {S, \vee, \wedge, \neg}$ be an algebraic system which satisfies the criteria of Definition 2.
- Axiom $(\text {BA}_1 \ 0)$
From Axiom $(\text {BA}_2 \ 0)$, we have that
- $\forall a, b \in S: a \vee b \in S, \ a \wedge b \in S, \ \neg a \in S$
That is, $\struct {S, \vee, \wedge, \neg}$ is closed under $\vee$, $\wedge$ and $\neg$.
- Axiom $(\text {BA}_1 \ 1)$
From Axiom $(\text {BA}_2 \ 2)$, we have that:
- $\forall a, b \in S: a \vee b = b \vee a, \ a \wedge b = b \wedge a$
That is, $\vee$ and $\wedge$ are commutative on $S$.
- Axiom $(\text {BA}_1 \ 2)$
From Axiom $(\text {BA}_2 \ 4)$, we have that:
- $\forall a, b, c \in S: a \wedge \paren {b \vee c} = \paren {a \wedge b} \vee \paren {a \wedge c}$
- $\forall a, b, c \in S: a \vee \paren {b \wedge c} = \paren {a \vee b} \wedge \paren {a \vee c}$
From Axiom $(\text {BA}_1 \ 1)$, we have that $\vee$ and $\wedge$ are commutative on $S$, and so:
- $\forall a, b, c \in S: \paren {a \vee b} \wedge c = \paren {a \wedge c} \vee \paren {b \wedge c}$
- $\forall a, b, c \in S: \paren {a \wedge b} \vee c = \paren {a \vee c} \wedge \paren {b \vee c}$
That is, both $\vee$ and $\wedge$ distribute over the other.
- Axiom $(\text {BA}_1 \ 4)$
From Meet with Complement is Bottom:
- $\exists \bot \in S: \forall a \in S: a \wedge \neg a = \bot$
From Join with Complement is Top:
- $\exists \top \in S: \forall a \in S: a \vee \neg a = \top$
These elements $\bot$ and $\top$ are the only elements of $S$ which have these properties.
- Axiom $(\text {BA}_1 \ 3)$
We have demonstrated Boolean Algebra: Axiom $(\text {BA}_1 \ 4)$ above.
Then:
\(\ds \bot \vee b\) | \(=\) | \(\ds \paren {a \wedge \neg a} \vee b\) | Boolean Algebra: Axiom $(\text {BA}_1 \ 4)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds b\) | Boolean Algebra: Axiom $(\text {BA}_2 \ 5)$ |
\(\ds \top \wedge b\) | \(=\) | \(\ds \paren {a \vee \neg a} \wedge b\) | Boolean Algebra: Axiom $(\text {BA}_1 \ 4)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds b\) | Boolean Algebra: Axiom $(\text {BA}_2 \ 5)$ |
From Axiom $(\text {BA}_1 \ 1)$, we have that $\vee$ and $\wedge$ are commutative on $S$, and so:
- $b \vee \bot = b :$b \wedge \top = b
That is, $\bot$ is an identity element for $\vee$, and $\top$ is an identity element for $\wedge$.
All axioms are fulfilled.
$\Box$
Hence the result.
$\blacksquare$