Equivalence of Definitions of Normal Subset/1 iff 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group.

Let $S$ be a subset of $G$.


Then Normal Subset/Definition 1 is equivalent to Normal Subset/Definition 2.


That is, the following three statements are equivalent:

$(1): \quad \forall g \in G: g \circ S = S \circ g$
$(2): \quad \forall g \in G: g \circ S \circ g^{-1} = S$
$(3): \quad \forall g \in G: g^{-1} \circ S \circ g = S$


Proof

Let $e$ be the identity of $G$.

First note that:

$(4): \quad \paren {\forall g \in G: g \circ S \circ g^{-1} = S} \iff \paren {\forall g \in G: g^{-1} \circ S \circ g = S}$

which is shown by, for example, setting $h := g^{-1}$ and substituting.


Necessary Condition

Suppose that $S$ satisfies $(1)$.


Let $g \in G$.

Then:

\(\ds g \circ S\) \(=\) \(\ds S \circ g\) $(1)$
\(\ds \leadsto \ \ \) \(\ds \paren {g \circ S} \circ g^{-1}\) \(=\) \(\ds \paren {S \circ g} \circ g^{-1}\)
\(\ds \leadsto \ \ \) \(\ds g \circ S \circ g^{-1}\) \(=\) \(\ds S \circ \paren {g \circ g^{-1} }\) Subset Product within Semigroup is Associative: Corollary
\(\ds \leadsto \ \ \) \(\ds g \circ S \circ g^{-1}\) \(=\) \(\ds S \circ e\) Definition of Inverse Element
\(\ds \leadsto \ \ \) \(\ds g \circ S \circ g^{-1}\) \(=\) \(\ds S\) Subset Product by Identity Singleton
\(\ds \leadsto \ \ \) \(\ds g^{-1} \circ S \circ g\) \(=\) \(\ds S\) $(4)$

$\Box$


Sufficient Condition

Suppose that $S$ satisfies $(2)$ or $(3)$.

By $(4)$, as long as one of these statements holds, the other one holds as well.


Let $g \in G$.

Then:

\(\ds g \circ S \circ g^{-1}\) \(=\) \(\ds S\)
\(\ds \leadsto \ \ \) \(\ds \paren {g \circ S \circ g^{-1} } \circ g\) \(=\) \(\ds S \circ g\)
\(\ds \leadsto \ \ \) \(\ds \paren {g \circ S} \circ \paren {g^{-1} \circ g}\) \(=\) \(\ds S \circ g\) Subset Product within Semigroup is Associative: Corollary
\(\ds \leadsto \ \ \) \(\ds \paren {g \circ S} \circ e\) \(=\) \(\ds S \circ g\) Definition of Inverse Element
\(\ds \leadsto \ \ \) \(\ds g \circ S\) \(=\) \(\ds S \circ g\) Subset Product by Identity Singleton

$\blacksquare$