Euclidean Algorithm/Least Absolute Remainder/Examples/12378 and 3054

From ProofWiki
Jump to navigation Jump to search

Examples of Use of Euclidean Algorithm: Least Absolute Remainder Variant

The GCD of $12378$ and $3054$ is:

$\gcd \set {12378, 3054} = 6$

and takes $4$ division operations to get there.


Integer Combination

$6$ can be expressed as an integer combination of $12378$ and $3054$:

$6 = 132 \times 12378 - 535 \times 3054$


Proof

\(\text {(1)}: \quad\) \(\ds 12378\) \(=\) \(\ds 4 \times 3054 + 162\)
\(\text {(2)}: \quad\) \(\ds 3054\) \(=\) \(\ds 19 \times 162 - 24\)
\(\text {(3)}: \quad\) \(\ds 162\) \(=\) \(\ds 7 \times 24 - 6\)
\(\text {(4)}: \quad\) \(\ds 24\) \(=\) \(\ds \paren {-4} \times \paren {-6} + 0\)

Thus:

$\gcd \set {12378, 3054} = 6$

As can be seen, it takes $4$ division operations.

$\blacksquare$


Sources