Field Norm of Quaternion is Multiplicative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf x$ be a quaternion.

Let $\overline {\mathbf x}$ be the conjugate of $\mathbf x$.


The field norm of $\mathbf x$:

$\map n {\mathbf x} := \size {\mathbf x \overline {\mathbf x} }$

is a multiplicative function.


Proof

\(\ds \map n {\mathbf x \mathbf y}\) \(=\) \(\ds \mathbf x \, \mathbf y \ \overline {\mathbf x \, \mathbf y}\) Definition of Field Norm of Quaternion
\(\ds \) \(=\) \(\ds \mathbf x \, \mathbf y \paren {\overline {\mathbf y} \, \overline {\mathbf x} }\) Product of Quaternion Conjugates
\(\ds \) \(=\) \(\ds \mathbf x \paren {\mathbf y \paren {\overline {\mathbf y} \, \overline {\mathbf x} } }\)
\(\ds \) \(=\) \(\ds \mathbf x \paren {\paren {\mathbf y \, \overline {\mathbf y} } \overline {\mathbf x} }\)
\(\ds \) \(=\) \(\ds \mathbf x \paren {\map n {\mathbf y} \overline {\mathbf x} }\)
\(\ds \) \(=\) \(\ds \map n {\mathbf y} \paren {\mathbf x \, \overline {\mathbf x} }\)
\(\ds \) \(=\) \(\ds \map n {\mathbf y} \, \map n {\mathbf x}\)
\(\ds \) \(=\) \(\ds \map n {\mathbf x} \, \map n {\mathbf y}\)

$\blacksquare$


Sources