Function f is Big-O of g iff g is Big-Omega of f

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $f: \N \to \R, g: \N \to \R$ be two real sequences, expressed here as real-valued functions on the set of natural numbers $\N$.

Then:

$\map f n \in \map \OO {\map g n}$

if and only if:

$\map g n \in \map \Omega {\map f n}$

where:

$\OO$ denotes big-$\OO$ notation
$\Omega$ denotes big-$\Omega$ notation.


Proof

Recall the definitions:

$\map \Omega f = \set {g: \N \to \R: \exists c_1 \in \R_{>0}: \exists n_1 \in \N: \forall n > n_1: 0 \le c_1 \cdot \size {\map f n} \le \size {\map g n} }$
$\map \OO g = \set {f: \N \to \R: \exists c_2 \in \R_{>0}: \exists n_2 \in \N: \forall n > n_2: 0 \le \size {\map f n} \le c_2 \cdot \size {\map g n} }$

for some $n_1, n_2 \in \N$.




Hence:

If $g \in \map \Omega f$, then $\forall n > n_1: \exists c_1 > 0 : \map g n \ge c_1 \cdot \map f n$
If $f \in \map \OO g$, then $\forall n > n_2: \exists c_2 > 0 : \map f n \le c_2 \cdot \map g n$


First let us assume that $n \ge \max \set {n_1, n_2}$ in all the below work.


Sufficient Condition

Let $g \in \map \Omega f$.

Then:

\(\ds \map g n\) \(\ge\) \(\ds c_1 \cdot \map f n\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 {c_1} \cdot \map g n\) \(\ge\) \(\ds \map f n\) dividing by $c_1$, as $c_1 \ne 0$
\(\ds \leadsto \ \ \) \(\ds c_2 \cdot \map g n\) \(\ge\) \(\ds \map f n\) setting $c_2 := \dfrac 1 {c_1}$
\(\ds \leadsto \ \ \) \(\ds f\) \(\in\) \(\ds \map \OO g\) Definition of Big-$\OO$ Notation

Hence we have:

$g \in \map \Omega f \implies f \in \map \OO g$

$\Box$


Necessary Condition

Let $f \in \map \OO g$.

Then:

\(\ds \map f n\) \(\le\) \(\ds c_2 \cdot \map g n\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 {c_2} \cdot \map f n\) \(\le\) \(\ds \map g n\) dividing by $c_2$, as $c_2 \ne 0$
\(\ds \leadsto \ \ \) \(\ds c_2 \cdot \map f n\) \(\le\) \(\ds \map g n\) setting $c_2 := \dfrac 1 {c_1}$
\(\ds \leadsto \ \ \) \(\ds g\) \(\in\) \(\ds \map \Omega f\) Definition of Big-$\Omega$ Notation

Hence we have:

$f \in \map \OO g \implies g \in \map \Omega g$

$\Box$


Both conditions have been proven, hence:

$f \in \map \OO g \iff g \in \map \Omega f$

$\blacksquare$


Sources