General Linear Group is not Abelian/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $K$ be a field whose zero is $0_K$ and unity is $1_K$.

Let $\GL {n, K}$ be the general linear group of order $n$ over $K$.


Then $\GL {n, K}$ is not an abelian group.


Proof

Let:

\(\ds A\) \(=\) \(\ds \begin {pmatrix} 1 & 1 \\ 0 & 1 \end {pmatrix}\)
\(\ds B\) \(=\) \(\ds \begin {pmatrix} 1 & 1 \\ 1 & 1 \end {pmatrix}\)

Both $A$ and $B$ are elements of the general linear group.


Then:

\(\ds A B\) \(=\) \(\ds \begin {pmatrix} 1 & 1 \\ 0 & 1 \end {pmatrix} \begin {pmatrix} 1 & 1 \\ 1 & 1 \end {pmatrix}\)
\(\ds \) \(=\) \(\ds \begin {pmatrix} 2 & 2 \\ 1 & 1 \end {pmatrix}\)
\(\ds B A\) \(=\) \(\ds \begin {pmatrix} 1 & 1 \\ 1 & 1 \end {pmatrix} \begin {pmatrix} 1 & 1 \\ 0 & 1 \end {pmatrix}\)
\(\ds \) \(=\) \(\ds \begin {pmatrix} 2 & 1 \\ 2 & 1 \end {pmatrix}\)
\(\ds \leadsto \ \ \) \(\ds AB\) \(\ne\) \(\ds BA\)

and it follows by definition that the general linear group is not abelian.

$\blacksquare$


Sources