Henry Ernest Dudeney/Puzzles and Curious Problems/111 - Odds and Evens/Solution

From ProofWiki
Jump to navigation Jump to search

Puzzles and Curious Problems by Henry Ernest Dudeney: $111$

Odds and Evens
Every asterisk and letter represents a figure,
and "$\mathtt O$" stands for an odd figure ($1$, $3$, $5$, $7$, or $9$)
while "$\mathtt E$" represents an even figure ($2$, $4$, $6$, $8$, or $0$).
Can you construct an arrangement complying with these conditions?
There are $6$ solutions.
Can you find one, or all of them?
       *******
    ----------
 ***)*********
     OE*
     -----
      ****
      OO**
      -----
        ***
        EE*
        ----
         ***
         EO*
         ----
         ****
         EE**
         -----
           ***
           OO*
           ---


Solution

Solution $1$

       3071294
    ----------
 249)764752206
     747
     -----
      1775
      1743
      -----
        322
        249
        ----
         732
         498
         ----
         2340
         2241
         -----
           996
           996
           ---


Solution $2$

       3081294
    ----------
 249)767242206
     747
     -----
      2024
      1992
      -----
        322
        249
        ----
         732
         498
         ----
         2340
         2241
         -----
           996
           996
           ---


Solution $3$

       4081293
    ----------
 245)999916785
     980
     -----
      1991
      1960
      -----
        316
        245
        ----
         717
         490
         ----
         2278
         2205
         -----
           735
           735
           ---


Solution $4$

       4071293
    ----------
 245)997466785
     980
     -----
      1746
      1715
      -----
        316
        245
        ----
         717
         490
         ----
         2278
         2205
         -----
           735
           735
           ---


Solution $5$

       3081294
    ----------
 248)764160912
     744
     -----
      2016
      1984
      -----
        320
        248
        ----
         729
         496
         ----
         2331
         2232
         -----
           992
           992
           ---


Solution $6$

       3071294
    ----------
 248)761680912
     744
     -----
      1768
      1736
      -----
        320
        248
        ----
         729
         496
         ----
         2331
         2232
         -----
           992
           992
           ---


Proof

Declarations

Let $D$ denote the divisor.

Let $Q$ denote the quotient.

Let $N$ denote the dividend.

Let $q_1$ to $q_7$ denote the digits of $Q$ which are calculated at each stage of the long division process in turn.

Let $n_1$ to $n_7$ denote the partial dividends which are subject to the $1$st to $7$th division operations respectively.

Note that $n_2 = 0$, but has been retained for consistency of numbering.

Let $j_1$ to $j_7$ denote the least significant digits of $n_1$ to $n_7$ as they are brought down from $N$ at each stage of the long division process in turn.

Let $p_1$ to $p_7$ denote the partial products generated by the $1$st to $7$th division operations respectively: $p_k = q_k D$

Again note that $p_2 = 0$, but has been retained for consistency of numbering.

Let $d_1$ to $d_7$ denote the differences between the partial dividends and partial products: $d_k = n_k - p_k$.

By the mechanics of a long division, we have throughout that:

$n_k = 10 d_{k - 1} + j_k$

for $k \ge 2$.


Hence we can refer to elements of the structure of this long division as follows:

       *******  -->     Q
    ----------        ---
 ***)*********  --> D ) N
     OE*        --> p_1
     -----
      ****      --> n_3
      OO**      --> p_3
      -----
        ***     --> n_4
        EE*     --> p_4
        ----
         ***    --> n_5
         EO*    --> p_5
         ----
         ****   --> n_6
         EE**   --> p_6
         -----
           ***  --> n_7
           OO*  --> p_7
           ---


Initial Deductions

First we note that the partial products are structured as follows:

$p_1: \mathtt {O E} *$
$p_3: \mathtt {O O} * *$
$p_4: \mathtt {E E} *$
$p_5: \mathtt {E O} *$
$p_6: \mathtt {E E} * *$
$p_7: \mathtt {O O} *$

and so are all distinct.

Hence $q_1$ to $q_7$ are also distinct.

We also know that $q_2 = 0$ as $2$ digits were pulled down into $n_3$.

Thus the first $3$ digits of $n_3$ form a number strictly smaller than $D$.


We have that $p_1$, $p_4$, $p_5$ and $p_7$ each have $3$ digits.

But each of $q_1$, $q_4$, $q_5$ and $q_7$ are distinct.

Hence:

\(\ds \max \set {q_1, q_4, q_5, q_7}\) \(\ge\) \(\ds 4\)
\(\ds \leadsto \ \ \) \(\ds \max \set {q_1, q_4, q_5, q_7} \times D\) \(=\) \(\ds \max \set {p_1, p_4, p_5, p_7}\)
\(\ds \) \(\le\) \(\ds 999\)
\(\ds \leadsto \ \ \) \(\ds D\) \(\le\) \(\ds \dfrac {999} 4\)
\(\ds \leadsto \ \ \) \(\ds D\) \(\le\) \(\ds 249\)


Notice that $p_6$ is a $4$-digit number that starts with an even number.

Therefore $p_6 \ge 2000$.

Hence:

\(\ds q_6\) \(\le\) \(\ds 9\)
\(\ds q_6 \times D\) \(=\) \(\ds p_6\)
\(\ds \) \(\ge\) \(\ds 2000\)
\(\ds \leadsto \ \ \) \(\ds D\) \(\ge\) \(\ds \dfrac {2000} 9\)
\(\ds \leadsto \ \ \) \(\ds D\) \(\ge\) \(\ds 223\)

That is:

$223 \le D \le 249$


The four $3$-digit multiples of $D$ are of the patterns:

$p_1: \mathtt {O E} *$, $p_4: \mathtt {E E} *$, $p_5: \mathtt {E O} *$, $p_7: \mathtt {O O} *$

If $3 D < 700$, the first three multiples of $D$ all begin with the digits $2$, $4$ and $6$, which causes the candidate $D$ to fail the criteria above.

Thus:

$3 D \ge 700$

or equivalently:

$D \ge 234$


We check the rest of candidates for $D$ to see whether they have multiples that are of each of the six forms.

First we check the $3$-digit multiples.

For visual clarity, the first two digits are marked $\color { red } {\text {red} }$ when odd and $\color { blue } {\text {blue} }$ when even:

$\begin{array} {r|rrrrrrrr} \times & 2 & 3 & 4 \\ \hline

\color {blue} 2 \color {red} 3 4 & \color {blue} 4 \color {blue} 68 & \color {red} 7 \color {blue} 02 & \color {red} 9 \color {red} 3 6 & \\ \color {blue} 2 \color {red} 3 5 & \color {blue} 4 \color {red} 70 & \color {red} 7 \color {blue} 05 & \color {red} 9 \color {blue} 40 & \\ \color {blue} 2 \color {red} 3 6 & \color {blue} 4 \color {red} 72 & \color {red} 7 \color {blue} 08 & \color {red} 9 \color {blue} 44 & \\ \color {blue} 2 \color {red} 3 7 & \color {blue} 4 \color {red} 74 & \color {red} 7 \color {red} 11 & \color {red} 9 \color {blue} 48 & \\ \color {blue} 2 \color {red} 3 8 & \color {blue} 4 \color {red} 76 & \color {red} 7 \color {red} 14 & \color {red} 9 \color {red} 52 & \\ \color {blue} 2 \color {red} 3 9 & \color {blue} 4 \color {red} 78 & \color {red} 7 \color {red} 17 & \color {red} 9 \color {red} 56 & \\ \color {blue} 2 \color {blue} 40 & \color {blue} 4 \color {blue} 80 & \color {red} 7 \color {blue} 20 & \color {red} 9 \color {blue} 60 & \\ \color {blue} 2 \color {blue} 41 & \color {blue} 4 \color {blue} 82 & \color {red} 7 \color {blue} 23 & \color {red} 9 \color {blue} 64 & \\ \color {blue} 2 \color {blue} 42 & \color {blue} 4 \color {blue} 84 & \color {red} 7 \color {blue} 26 & \color {red} 9 \color {blue} 68 & \\ \color {blue} 2 \color {blue} 43 & \color {blue} 4 \color {blue} 86 & \color {red} 7 \color {blue} 29 & \color {red} 9 \color {red} 72 & \\ \color {blue} 2 \color {blue} 44 & \color {blue} 4 \color {blue} 88 & \color {red} 7 \color {red} 32 & \color {red} 9 \color {red} 76 & \\ \color {blue} 2 \color {blue} 45 & \color {blue} 4 \color {red} 90 & \color {red} 7 \color {red} 35 & \color {red} 9 \color {blue} 80 & \\ \color {blue} 2 \color {blue} 46 & \color {blue} 4 \color {red} 92 & \color {red} 7 \color {red} 38 & \color {red} 9 \color {blue} 84 & \\ \color {blue} 2 \color {blue} 47 & \color {blue} 4 \color {red} 94 & \color {red} 7 \color {blue} 41 & \color {red} 9 \color {blue} 88 & \\ \color {blue} 2 \color {blue} 48 & \color {blue} 4 \color {red} 96 & \color {red} 7 \color {blue} 44 & \color {red} 9 \color {red} 92 & \\ \color {blue} 2 \color {blue} 49 & \color {blue} 4 \color {red} 98 & \color {red} 7 \color {blue} 47 & \color {red} 9 \color {red} 96 & \end{array}$

Of the above, $234$, $245$, $246$, $248$ and $249$ have the appropriate $\mathtt {O E}$, $\mathtt {E E}$, $\mathtt {E O}$ and $\mathtt {O O}$ forms, in some order.


We now check the $4$-digit multiples of those $5$ numbers in the same way:

$\begin{array} {r|rrrrrrrr} \times & 5 & 6 & 7 & 8 & 9 \\ \hline

234 & \color {red} {1170} & 1404 & 1638 & 1872 & 2106 \\ 245 & 1225 & 1470 & \color {red} {1715} & \color {red} {1960} & \color {blue} {2205} \\ 246 & 1230 & 1476 & \color {red} {1722} & \color {red} {1968} & \color {blue} {2214} \\ 248 & 1240 & 1488 & \color {red} {1736} & \color {red} {1984} & \color {blue} {2232} \\ 249 & 1245 & 1494 & \color {red} {1743} & \color {red} {1992} & \color {blue} {2241} \end{array}$

The numbers of $\mathtt {O O}$ form are marked $\color { red } {\text {red} }$, while those of $\mathtt {E E}$ form are marked $\color { blue } {\text {blue} }$.

It can be seen that of the above, $234$ is eliminated as a candidate as it has no $4$-digit multiple of $\mathtt {E E}$ form.


It remains to explore the individual long divisions which are composed of the above candidate values of $D$ and their multiples.

Since we know the form of each multiple, we can match each form to its corresponding digit of the quotient.

For $D = 246$, the quotient is either $4 \, 071 \, 293$ or $4 \, 081 \, 293$.

However, we would have:

$N = D Q \ge 246 \times 4 \, 071 \, 293 = 1 \, 001 \, 538 \,078$

but $N$ only has $9$ digits.

Therefore $D \ne 246$.

The rest of the possibilities all yield solutions, and will be explored in their respective solution pages.




Sources