Image of Linear Combination of Subsets of Vector Space under Linear Transformation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $K$ be a field.

Let $X$ and $Y$ be vector spaces over $K$.

Let $T : X \to Y$ be a linear transformation.

Let $\lambda, \mu \in K$.

Let $A, B \subseteq X$.


Then:

$T \sqbrk {\lambda A + \mu B} = \lambda T \sqbrk A + \mu T \sqbrk B$


Proof

We have:

\(\ds T \sqbrk {\bigcup_{x \in A} \paren {\lambda x + \mu B} }\) \(=\) \(\ds \bigcup_{x \in A} T \sqbrk {\lambda x + \mu B}\) Image of Union under Mapping
\(\ds \) \(=\) \(\ds \bigcup_{x \in A} \paren {\lambda T x + T \sqbrk {\mu B} }\) Image of Translation of Set under Linear Transformation is Translation of Image
\(\ds \) \(=\) \(\ds \bigcup_{x \in A} \paren {\lambda T x} + T \sqbrk {\mu B}\) Translation of Union of Subsets of Vector Space
\(\ds \) \(=\) \(\ds \lambda \bigcup_{x \in A} \paren {T x} + T \sqbrk {\mu B}\) Image of Dilation of Set under Linear Transformation is Dilation of Image
\(\ds \) \(=\) \(\ds \lambda T \sqbrk {\bigcup_{x \in A} x} + T \sqbrk {\mu B}\) Image of Union under Mapping
\(\ds \) \(=\) \(\ds \lambda T \sqbrk A + T \sqbrk {\mu B}\)
\(\ds \) \(=\) \(\ds \lambda T \sqbrk A + \mu T \sqbrk B\) Image of Dilation of Set under Linear Transformation is Dilation of Image

$\blacksquare$