Laplace Transform of Bessel Function of the First Kind/Proof 2

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $J_n$ denote the Bessel function of the first kind of order $n$.


Then the Laplace transform of $J_n$ is given as:

$\laptrans {\map {J_n} {a t} } = \dfrac {\paren {\sqrt {s^2 + a^2} - s}^n} {a^n \sqrt {s^2 + a^2} }$


Proof

\(\ds \laptrans {t^2 \frac {\d^2 x} {\d t^2} + t \frac {\d x} {\d t} + \paren {t^2 - \alpha^2} x} s\) \(=\) \(\ds 0\) Laplace Transform of Bessel's Equation
\(\ds \frac {\d^2} {\d s^2} \laptrans {x} - \frac \d {\d s} \laptrans {x'} + \frac {\d^2} {\d s^2} \laptrans x - \alpha^2 \laptrans x\) \(=\) \(\ds 0\) setting the initial conditions as $\map x 0 = 1, \ \map {x'} 0 = 0$
\(\ds \paren {s^2 + 1} \LL \set x + 3 s \LL' \set x + \paren {1 - \alpha^2} \laptrans x\) \(=\) \(\ds 0\) Make the following change of variable $u = \sqrt {s^2 + 1} \laptrans x$
\(\ds u \sqrt {s^2 + 1} + \dfrac s {\sqrt {s^2 + 1} } u'\) \(=\) \(\ds \frac {\alpha^2 u} {\sqrt {s^2 + 1} }\)
\(\ds \paren {u' \sqrt {s^2 + 1} }'\) \(=\) \(\ds \frac {\alpha^2 u} {\sqrt {s^2 + 1} }\) multiplying both sides by $u' \sqrt {s^2 + 1}$
\(\ds \frac 1 2 \paren { \paren {u' \sqrt {s^2 + 1} }^2}'\) \(=\) \(\ds \frac 1 2 \alpha^2 \paren {u^2}'\)
\(\ds u' \sqrt {s^2 + 1}\) \(=\) \(\ds -\alpha u\) Constant of Integration removed by the Final Value Theorem of Laplace Transform
\(\ds \int \frac 1 u \rd u\) \(=\) \(\ds \int -\frac \alpha {\sqrt {s^2 + 1} } \rd s\)
\(\ds \map \ln u\) \(=\) \(\ds \alpha \map \ln {\sqrt {s^2 + 1} - s}\)
\(\ds u\) \(=\) \(\ds \paren {\sqrt {s^2 + 1} - s}^\alpha\) reverting the substitution
\(\ds \laptrans x\) \(=\) \(\ds \dfrac {\paren {\sqrt {s^2 + 1} - s}^\alpha} {\sqrt {s^2 + 1} }\)


Hence:

\(\ds \map {\laptrans {\map {J_\alpha} t} } s\) \(=\) \(\ds \dfrac {\paren {\sqrt {s^2 + 1} - s}^\alpha} {\sqrt {s^2 + 1} }\)

$\blacksquare$