Laplace Transform of Bessel Function of the First Kind
Jump to navigation
Jump to search
Theorem
Let $J_n$ denote the Bessel function of the first kind of order $n$.
Then the Laplace transform of $J_n$ is given as:
- $\laptrans {\map {J_n} {a t} } = \dfrac {\paren {\sqrt {s^2 + a^2} - s}^n} {a^n \sqrt {s^2 + a^2} }$
Proof 1
From Series Expansion of Bessel Function of the First Kind:
\(\ds \map {J_n} {a t}\) | \(=\) | \(\ds \dfrac {\paren {a t}^n} {2^n \, \map \Gamma {n + 1} } \paren {1 - \dfrac {\paren {a t}^2} {2 \paren {2 n + 2} } + \dfrac {\paren {a t}^4} {2 \times 4 \paren {2 n + 2} \paren {2 n + 4} } - \cdots}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {\paren {-1}^k} {k! \, \map \Gamma {n + k + 1} } \paren {\dfrac {a t} 2}^{n + 2 k}\) |
Hence:
\(\ds \laptrans {\map {J_n} {a t} }\) | \(=\) | \(\ds \laptrans {\sum_{k \mathop = 0}^\infty \dfrac {\paren {-1}^k} {k! \, \map \Gamma {n + k + 1} } \paren {\dfrac {a t} 2}^{n + 2 k} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {\paren {-1}^k a^{n + 2 k} } {2^{n + 2 k} k! \, \map \Gamma {n + k + 1} } \laptrans {t^{n + 2 k} }\) | Linear Combination of Laplace Transforms | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {\paren {-1}^k a^{n + 2 k} } {2^{n + 2 k} k! \, \map \Gamma {n + k + 1} } \dfrac {\map \Gamma {n + 2 k + 1} } {s^{n + 2 k + 1} }\) | Laplace Transform of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {\dfrac a 2}^{n + 2 k} \dfrac {\map \Gamma {n + 2 k + 1} } {k \, \map \Gamma k \, \map \Gamma {n + k + 1} } \dfrac 1 {s^{n + 2 k + 1} }\) | rearrangement, Gamma Function Extends Factorial | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {\dfrac a 2}^{n + 2 k} \dfrac 1 {k \, \map \Beta {k, n + k + 1} } \dfrac 1 {s^{n + 2 k + 1} }\) | Definition 3 of Beta Function |
![]() | This needs considerable tedious hard slog to complete it. In particular: This approach may not be workable, so may have to take a different one and start again. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Proof 2
\(\ds \laptrans {t^2 \frac {\d^2 x} {\d t^2} + t \frac {\d x} {\d t} + \paren {t^2 - \alpha^2} x} s\) | \(=\) | \(\ds 0\) | Laplace Transform of Bessel's Equation | |||||||||||
\(\ds \frac {\d^2} {\d s^2} \laptrans {x''} - \frac \d {\d s} \laptrans {x'} + \frac {\d^2} {\d s^2} \laptrans x - \alpha^2 \laptrans x\) | \(=\) | \(\ds 0\) | setting the initial conditions as $\map x 0 = 1, \ \map {x'} 0 = 0$ | |||||||||||
\(\ds \paren {s^2 + 1} \LL'' \set x + 3 s \LL' \set x + \paren {1 - \alpha^2} \laptrans x\) | \(=\) | \(\ds 0\) | Make the following change of variable $u = \sqrt {s^2 + 1} \laptrans x$ | |||||||||||
\(\ds u'' \sqrt {s^2 + 1} + \dfrac s {\sqrt {s^2 + 1} } u'\) | \(=\) | \(\ds \frac {\alpha^2 u} {\sqrt {s^2 + 1} }\) | ||||||||||||
\(\ds \paren {u' \sqrt {s^2 + 1} }'\) | \(=\) | \(\ds \frac {\alpha^2 u} {\sqrt {s^2 + 1} }\) | multiplying both sides by $u' \sqrt {s^2 + 1}$ | |||||||||||
\(\ds \frac 1 2 \paren { \paren {u' \sqrt {s^2 + 1} }^2}'\) | \(=\) | \(\ds \frac 1 2 \alpha^2 \paren {u^2}'\) | ||||||||||||
\(\ds u' \sqrt {s^2 + 1}\) | \(=\) | \(\ds -\alpha u\) | Constant of Integration removed by the Final Value Theorem of Laplace Transform | |||||||||||
\(\ds \int \frac 1 u \rd u\) | \(=\) | \(\ds \int -\frac \alpha {\sqrt {s^2 + 1} } \rd s\) | ||||||||||||
\(\ds \map \ln u\) | \(=\) | \(\ds \alpha \map \ln {\sqrt {s^2 + 1} - s}\) | ||||||||||||
\(\ds u\) | \(=\) | \(\ds \paren {\sqrt {s^2 + 1} - s}^\alpha\) | reverting the substitution | |||||||||||
\(\ds \laptrans x\) | \(=\) | \(\ds \dfrac {\paren {\sqrt {s^2 + 1} - s}^\alpha} {\sqrt {s^2 + 1} }\) |
Hence:
\(\ds \map {\laptrans {\map {J_\alpha} t} } s\) | \(=\) | \(\ds \dfrac {\paren {\sqrt {s^2 + 1} - s}^\alpha} {\sqrt {s^2 + 1} }\) |
$\blacksquare$
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Laplace Transforms of Special Functions: $3$