Matrix Multiplication on Diagonal Matrices is Commutative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf A$ and $\mathbf B$ be diagonal matrices.

Then:

$\mathbf A \mathbf B = \mathbf B \mathbf A$

where $\mathbf A \mathbf B$ denotes (conventional) matrix product.


Proof

\(\ds \mathbf A\) \(:=\) \(\ds \sqbrk {a_{ij} }_n\)
\(\ds \mathbf B\) \(:=\) \(\ds \sqbrk {b_{ij} }_n\)

Note that the orders of $\mathbf A$ and $\mathbf B$ must be equal in order for matrix product to be defined.


Then we have:

\(\ds \mathbf A \mathbf B\) \(=\) \(\ds \sqbrk {c_{ij} }_n\) where $c_{ij}$ denotes the $\tuple {i, j}$th element of $\mathbf A \mathbf B$
\(\ds \) \(=\) \(\ds \begin {cases} a_{i i} b_{i i} & i = j \\ 0 & i \ne j \end {cases}\) Product of Diagonal Matrices is Diagonal
\(\ds \) \(=\) \(\ds \begin {cases} b_{i i} a_{i i} & i = j \\ 0 & i \ne j \end {cases}\) Commutative Law of Multiplication
\(\ds \) \(=\) \(\ds \mathbf B \mathbf A\) Product of Diagonal Matrices is Diagonal

$\blacksquare$


Sources