# Models for Propositional Logic

## Theorem

This page gathers together some useful results that can be used in the derivation of proofs by propositional tableau.

Let $\MM$ be a model for propositional logic, and let $\mathbf A$ and $\mathbf B$ be WFFs of propositional logic.

Then the following results hold.

The symbol $\models$ is used throughout to denote semantic consequence.

### Double Negation

$\MM \models \neg \neg \mathbf A$ if and only if $\MM \models \mathbf A$

This is the rule of Double Negation.

### And

$\MM \models \paren {\mathbf A \land \mathbf B}$ if and only if both $\MM \models \mathbf A$ and $\MM \models \mathbf B$

This follows by definition of Conjunction.

### Not And

$\MM \models \neg \paren {\mathbf A \land \mathbf B}$ if and only if either $\MM \models \neg \mathbf A$ or $\MM \models \neg \mathbf B$

This follows from De Morgan's Laws: Disjunction of Negations.

### Or

$\MM \models \paren {\mathbf A \lor \mathbf B}$ if and only if either $\MM \models \mathbf A$ or $\MM \models \mathbf B$

This follows by definition of Disjunction.

### Not Or

$\MM \models \neg \paren {\mathbf A \lor \mathbf B}$ if and only if $\MM \models \neg \mathbf A$ and $\MM \models \neg \mathbf B$

This follows from De Morgan's Laws: Conjunction of Negations.

### Implies

$\MM \models \paren {\mathbf A \implies \mathbf B}$ if and only if either $\MM \models \neg \mathbf A$ or $\MM \models \mathbf B$

This follows from Disjunction and Implication.

### Not Implies

$\MM \models \neg \paren {\mathbf A \implies \mathbf B}$ if and only if $\MM \models \mathbf A$ and $\MM \models \neg \mathbf B$

This follows from Conjunction and Implication.

### Iff

$\MM \models \paren {\mathbf A \iff \mathbf B}$ if and only if either:
both $\MM \models \mathbf A$ and $\MM \models \mathbf B$

or:

both $\MM \models \neg \mathbf A$ and $\MM \models \neg \mathbf B$

This follows by definition of biconditional.

### Exclusive Or

$\MM \models \mathbf A \oplus \mathbf B$ if and only if either:
both $\MM \models \mathbf A$ and $\MM \models \neg \mathbf B$

or:

both $\MM \models \neg \mathbf A$ and $\MM \models \mathbf B$

This follows by definition of exclusive or.