Multiplicative Group of Reduced Residues Modulo 8 is Klein Four-Group
Jump to navigation
Jump to search
Theorem
Let $K_4$ denote the Klein $4$-group.
Let $R_4$ be the multiplicative group of reduced residues Modulo $8$.
Then $K_4$ and $R_4$ are isomorphic algebraic structures.
Proof
Establish the mapping $\phi: K_4 \to R_4$ as follows:
\(\ds \map \phi e\) | \(=\) | \(\ds \eqclass 1 8\) | ||||||||||||
\(\ds \map \phi a\) | \(=\) | \(\ds \eqclass 3 8\) | ||||||||||||
\(\ds \map \phi b\) | \(=\) | \(\ds \eqclass 5 8\) | ||||||||||||
\(\ds \map \phi c\) | \(=\) | \(\ds \eqclass 7 8\) |
From Isomorphism by Cayley Table, the two Cayley tables can be compared by eye to ascertain that $\phi$ is an isomorphism:
Cayley Table of Klein $4$-Group
The Cayley table for $K_4$ is as follows:
- $\begin{array}{c|cccc} & e & a & b & c \\ \hline e & e & a & b & c \\ a & a & e & c & b \\ b & b & c & e & a \\ c & c & b & a & e \\ \end{array}$
Multiplicative Group of Reduced Residues Modulo $8$
The Cayley table for $S$ is as follows:
- $\begin{array}{r|rrrr} \times_8 & \eqclass 1 8 & \eqclass 3 8 & \eqclass 5 8 & \eqclass 7 8 \\ \hline \eqclass 1 8 & \eqclass 1 8 & \eqclass 3 8 & \eqclass 5 8 & \eqclass 7 8 \\ \eqclass 3 8 & \eqclass 3 8 & \eqclass 1 8 & \eqclass 7 8 & \eqclass 5 8 \\ \eqclass 5 8 & \eqclass 5 8 & \eqclass 7 8 & \eqclass 1 8 & \eqclass 3 8 \\ \eqclass 7 8 & \eqclass 7 8 & \eqclass 5 8 & \eqclass 3 8 & \eqclass 1 8 \\ \end{array}$
Sources
- 1964: Walter Ledermann: Introduction to the Theory of Finite Groups (5th ed.) ... (previous) ... (next): Chapter $\text {I}$: The Group Concept: $\S 7$: Isomorphic Groups: Example $2$