Numbers such that Divisor Count divides Phi divides Divisor Sum/Examples/168

From ProofWiki
Jump to navigation Jump to search

Examples of Numbers such that Divisor Count divides Phi divides Divisor Sum

The number $168$ has the property that:

$\map {\sigma_0} {168} \divides \map \phi {168} \divides \map {\sigma_1} {168}$

where:

$\divides$ denotes divisibility
$\sigma_0$ denotes the divisor count function
$\phi$ denotes the Euler $\phi$ (phi) function
$\sigma_1$ denotes the divisor sum function.


Proof

\(\ds \map {\sigma_0} {168}\) \(=\) \(\, \ds 16 \, \) \(\ds \) $\sigma_0$ of $168$
\(\ds \map \phi {168}\) \(=\) \(\, \ds 48 \, \) \(\, \ds = \, \) \(\ds 3 \times 16\) $\phi$ of $168$
\(\ds \map {\sigma_1} {168}\) \(=\) \(\, \ds 480 \, \) \(\, \ds = \, \) \(\ds 10 \times 48\) $\sigma_1$ of $168$

$\blacksquare$