Primitive of Cosine of a x by Cosine of b x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \cos a x \cos b x \rd x = \frac {\map \sin {\paren {a - b} x} } {2 \paren {a - b} } + \frac {\map \sin {\paren {a + b} x} } {2 \paren {a + b} } + C$


Proof

\(\ds \int \cos a x \cos b x \rd x\) \(=\) \(\ds \int \paren {\frac {\map \cos {a x - b x} + \map \cos {a x + b x} } 2} \rd x\) Werner Formula for Cosine by Cosine
\(\ds \) \(=\) \(\ds \frac 1 2 \int \map \cos {\paren {a - b} x} \rd x + \frac 1 2 \int \map \cos {\paren {a + b} x} \rd x\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 2 \frac {\map \sin {\paren {a - b} x} } {a - b} + \frac 1 2 \frac {\map \sin {\paren {a + b} x} } {a + b} + C\) Primitive of $\cos a x$
\(\ds \) \(=\) \(\ds \frac {\map \sin {\paren {a - b} x} } {2 \paren {a - b} } + \frac {\map \sin {\paren {a + b} x} } {2 \paren {a + b} } + C\) tidying

$\blacksquare$


Also see


Sources