Primitive of Sine of a x by Sine of b x

From ProofWiki
Jump to navigation Jump to search

Theorem

For $p \ne q$:

$\ds \int \sin a x \sin b x \rd x = \frac {\map \sin {a - b} x} {2 \paren {a - b} } - \frac {\map \sin {a + b} x} {2 \paren {a + b} } + C$


Proof

\(\ds \int \sin a x \sin b x \rd x\) \(=\) \(\ds \int \paren {\frac {\map \cos {a x - b x} - \map \cos {a x + b x} } 2} \rd x\) Werner Formula for Sine by Sine
\(\ds \) \(=\) \(\ds \frac 1 2 \int \map \cos {a - b} x \rd x - \frac 1 2 \int \map \cos {a + b} x \rd x\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 2 \frac {\map \sin {a - b} x} {a - b} - \frac 1 2 \frac {\map \sin {a + b} x} {a + b} + C\) Primitive of $\cos a x$
\(\ds \) \(=\) \(\ds \frac {\map \sin {a - b} x} {2 \paren {a - b} } - \frac {\map \sin {a + b} x} {2 \paren {a + b} } + C\) simplifying

$\blacksquare$


Also see


Sources