Primitive of Exponential of a x by Cosine of b x/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $e^{a x} \cos b x$

$\ds \int e^{a x} \cos b x \rd x = \frac {e^{a x} \cos b x} a + \frac b a \int e^{a x} \sin b x \rd x$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v}{\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \cos b x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds -b \sin b x\) Derivative of $\cos a x$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds e^{a x}\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {e^{a x} } a\) Primitive of $e^{a x}$


Then:

\(\ds \int e^{a x} \cos b x \rd x\) \(=\) \(\ds \cos b x \paren {\frac {e^{a x} } a} - \int \paren {\frac {e^{a x} } a} \paren {-b \sin b x} \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {e^{a x} \cos b x} a + \frac b a \int e^{a x} \sin b x \rd x\) Primitive of Constant Multiple of Function

$\blacksquare$