Primitive of Inverse Hyperbolic Cotangent of x over a over x

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \int \dfrac 1 x \arcoth \dfrac x a \rd x\) \(=\) \(\ds -\sum_{k \mathop \ge 0} \frac 1 {\paren {2 k + 1}^2} \paren {\frac a x}^{2 k + 1} + C\)
\(\ds \) \(=\) \(\ds -\paren {\frac a x + \frac {\paren {a / x}^3} {3^2} + \frac {\paren {a / x}^5} {5^2} + \frac {\paren {a / x}^7} {7^2} + \cdots} + C\)


Proof

\(\ds \arcoth \dfrac x a\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {2 n + 1} \paren {\frac a x}^{2 n + 1}\) Power Series Expansion for Real Area Hyperbolic Cotangent
\(\ds \leadsto \ \ \) \(\ds \frac 1 x \arcoth \dfrac x a\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {2 n + 1} a^{2 n + 1} \frac 1 {x^{2 n + 2} }\)
\(\ds \leadsto \ \ \) \(\ds \int \frac 1 x \arcoth \dfrac x a \rd x\) \(=\) \(\ds \int \paren {\sum_{n \mathop = 0}^\infty \frac 1 {2 n + 1} a^{2 n + 1} \frac 1 {x^{2 n + 2} } } \rd x\)
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \int \paren {\frac 1 {2 n + 1} a^{2 n + 1} \frac 1 {x^{2 n + 2} } \rd x}\) Fubini's Theorem
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {2 n + 1} a^{2 n + 1} \frac {-1} {2 n + 1}\frac 1 {x^{2 n + 1} } + C\) Primitive of Power
\(\ds \) \(=\) \(\ds -\sum_{k \mathop \ge 0} \frac 1 {\paren {2 k + 1}^2} \paren {\frac a x}^{2 k + 1} + C\) rearranging

$\blacksquare$


Also see


Sources