Primitive of Power of x over Power of a squared minus x squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x^m \rd x} {\paren {a^2 - x^2}^n} = a^2 \int \frac {x^{m - 2} \rd x} {\paren {a^2 - x^2}^n} - \int \frac {x^{m - 2} \rd x} {\paren {a^2 - x^2}^{n - 1} }$

for $x^2 < a^2$.


Proof

\(\ds \int \frac {x^m \rd x} {\paren {a^2 - x^2}^n}\) \(=\) \(\ds \int \frac {x^{m - 2} \paren {x^2} \rd x} {\paren {a^2 - x^2}^n}\)
\(\ds \) \(=\) \(\ds \int \frac {x^{m - 2} \paren {a^2 + x^2 - a^2} \rd x} {\paren {a^2 - x^2}^n}\)
\(\ds \) \(=\) \(\ds \int \frac {x^{m - 2} \paren {a^2 - \paren {a^2 - x^2} } \rd x} {\paren {a^2 - x^2}^n}\)
\(\ds \) \(=\) \(\ds a^2 \int \frac {x^{m - 2} \rd x} {\paren {a^2 - x^2}^n} - \int \frac {x^{m - 2} \paren {a^2 - x^2} \rd x} {\paren {a^2 - x^2}^n}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds a^2 \int \frac {x^{m - 2} \rd x} {\paren {a^2 - x^2}^n} - \int \frac {x^{m - 2} \rd x} {\paren {a^2 - x^2}^{n - 1} }\) simplifying

$\blacksquare$


Also see


Sources