Primitive of Reciprocal of a squared minus x squared/Logarithm Form/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {a^2 - x^2}$

$\dfrac 1 {a^2 - x^2} \equiv \dfrac 1 {2 a \paren {a + x} } + \dfrac 1 {2 a \paren {a - x} }$


Proof

\(\ds \frac 1 {\paren {a^2 - x^2} }\) \(\equiv\) \(\ds \frac A {a - x} + \frac B {a + x}\) Difference of Two Squares
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {a + x} + B \paren {a - x}\) multiplying through by $\paren {a^2 - x^2}$


Setting $x = a$ in $(1)$:

\(\ds A \cdot 2 a + B \cdot 0\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 {2 a}\)


Setting $x = -a$ in $(1)$:

\(\ds A \cdot 0 + B \cdot \paren {2 a}\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac 1 {2 a}\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {2 a}\)
\(\ds B\) \(=\) \(\ds \frac 1 {2 a}\)

Hence the result.

$\blacksquare$