Primitive of Reciprocal of a squared minus x squared/Logarithm Form 1/size of x greater than a/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\size x > a$.

Then:

$\ds \int \frac {\d x} {a^2 - x^2} = \dfrac 1 {2 a} \map \ln {\dfrac {x + a} {x - a} } + C$


Proof

Let $\size x > a$.

Then:

\(\ds \int \frac {\d x} {a^2 - x^2}\) \(=\) \(\ds \frac 1 a \arcoth {\frac x a} + C\) Primitive of $\dfrac 1 {a^2 - x^2}$: $\arcoth$ form
\(\ds \) \(=\) \(\ds \frac 1 a \paren {\dfrac 1 2 \map \ln {\dfrac {x + a} {x - a} } } + C\) $\arcoth \dfrac x a$ in Logarithm Form
\(\ds \) \(=\) \(\ds \dfrac 1 {2 a} \map \ln {\frac {x + a} {x - a} } + C\) simplifying

$\blacksquare$