Primitive of Reciprocal of x by Root of a squared minus x squared/Logarithm Form
Jump to navigation
Jump to search
Theorem
For $a > 0$ and $0 < \size x < a$:
- $\ds \int \frac {\d x} {x \sqrt {a^2 - x^2} } = -\frac 1 a \map \ln {\frac {a + \sqrt {a^2 - x^2} } {\size x} } + C$
Proof
\(\ds \int \frac {\d x} {x \sqrt {a^2 - x^2} }\) | \(=\) | \(\ds -\frac 1 a \sech^{-1} {\frac {\size x} a} + C\) | Primitive of Reciprocal of $x \sqrt {a^2 - x^2}$: $\sech^{-1}$ form | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 a \map \ln {\frac {1 + \sqrt {1 - \paren {\frac {\size x} a}^2} } {\frac {\size x} a} } + C\) | Definition 2 of Inverse Hyperbolic Secant | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 a \map \ln {\frac {a + a \sqrt {1 - \paren {\frac {\size x} a}^2} } {\size x} } + C\) | multiplying top and bottom by $a$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 a \map \ln {\frac {a + \sqrt {a^2 - a^2 \paren {\frac {\size x} a}^2} } {\size x} } + C\) | moving $a$ within the square root | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 a \map \ln {\frac {a + \sqrt {a^2 - x^2} } {\size x} } + C\) | simplifying, noting $\size x^2 = x^2$ |
$\blacksquare$
Also see
Sources
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.3$ Rules for Differentiation and Integration: Integrals of Irrational Algebraic Functions: $3.3.46$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.47$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sqrt {a^2 - x^2}$: $14.241$