Primitive of Secant of a x over x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\sec a x} x \rd x = \ln \size x + \frac {\paren {a x}^2} 4 + \frac {5 \paren {a x}^4} {96} + \frac {61 \paren {a x}^6} {4320} + \cdots + \frac {\paren {-1}^n E_n \paren {a x}^{2 n} } {\paren {2 n} \paren {2 n}!} + \cdots + C$

where $E_n$ is the $n$th Euler number.


Proof

\(\ds \int \frac {\sec a x} x \rd x\) \(=\) \(\ds \int \frac 1 x \sum_{n \mathop = 0}^\infty \frac {\paren {-1}^n E_{2 n} \paren {a x}^{2 n} } {\paren {2 n}!} \rd x\) Power Series Expansion for Secant Function
\(\ds \) \(=\) \(\ds \int \frac {E_0} x \rd x + \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n E_{2 n} a^{2 n} } {\paren {2 n}!} \int x^{2 n - 1} \rd x\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \int \frac 1 x \rd x + \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n E_{2 n} a^{2 n} } {\paren {2 n}!} \paren {\frac {x^{2 n} } {2 n} } + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \ln \size x + \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n E_{2 n} \paren {a x}^{2 n} } {\paren {2 n} \paren {2 n}!} + C\) Primitive of Reciprocal

$\blacksquare$


Also see


Sources