Principal Right Ideal is Right Ideal

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a ring with unity.

Let $a \in R$.


Let $aR$ be the principal right ideal of $R$ generated by $a$.


Then $aR$ is an right ideal of $R$.


Proof

We establish that $aR$ is an right ideal of $R$, by verifying the conditions of Test for Right Ideal.


$aR \ne \O$, as $a \circ 1_R = a \in aR$.


Let $x, y \in ar$.

Then:

\(\ds \exists r, s \in R: \, \) \(\ds x\) \(=\) \(\ds a \circ r, y = a \circ s\)
\(\ds \leadsto \ \ \) \(\ds x + \paren {-y}\) \(=\) \(\ds a \circ r + \paren {a \circ -s}\) Product with Ring Negative
\(\ds \) \(=\) \(\ds a \circ \paren {r + \paren {-s} }\)
\(\ds \leadsto \ \ \) \(\ds x + \paren {-y}\) \(\in\) \(\ds aR\)


Let $s \in aR, x \in R$.

\(\ds s\) \(\in\) \(\ds aR, x \in R\)
\(\ds \leadsto \ \ \) \(\ds \exists r \in R: \, \) \(\ds s\) \(=\) \(\ds a \circ r\)
\(\ds \leadsto \ \ \) \(\ds s \circ x\) \(=\) \(\ds a \circ r \circ x\)
\(\ds \) \(\in\) \(\ds aR\)


Thus by Test for Right Ideal, $aR$ is a right ideal of $R$.

$\blacksquare$