Product of Computable Real Sequences is Computable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sequence {x_m}$ and $\sequence {y_m}$ be computable real sequences.

Then $\sequence {x_m y_m}$ is a computable real sequence.


Proof

By definition of computable real sequence, there exist total recursive $f, g : \N^2 \to \N$ such that, for all $m, n \in \N$:

$\dfrac {k_{m,n} - 1} {n + 1} < x_m < \dfrac {k_{m,n} + 1} {n + 1}$
$\dfrac {\ell_{m,n} - 1} {n + 1} < y_m < \dfrac {\ell_{m,n} + 1} {n + 1}$


By Computable Real Sequence iff Limits of Computable Rational Sequences, there exist:

such that:

$\forall m, p \in \N: \forall n \ge \map {\psi_x} {m, p}: \size {a_{\map {\phi_x} {m, n}} - x_m} < \dfrac 1 {p + 1}$
$\forall m, p \in \N: \forall n \ge \map {\psi_y} {m, p}: \size {a_{\map {\phi_y} {m, n}} - y_m} < \dfrac 1 {p + 1}$


By Computable Subsequence of Computable Rational Sequence is Computable/Corollary, there exist:

Computable rational sequences $\sequence {a'_k}, \sequence {b'_k}$

such that, for all $m, n \in \N$:

$a_{\map {\phi_x} {m, n}} = a'_{\map \pi {m, n}}$
$b_{\map {\phi_y} {m, n}} = b'_{\map \pi {m, n}}$

By Product of Computable Rational Sequences is Computable:

$\sequence {a'_k b'_k}$

is a computable rational sequence.


Define $\psi : \N^2 \to \N$ as:

$\map \psi {m, p} = \map \max {\map {\psi_x} {\paren {2 p + 2} \size {\ell_{m,0}} + 2 p + 1}, \map {\psi_y} {\paren {2 p + 2} \size {k_{m,0}} + 4 p + 3}}$

which is total recursive by:


Let $m, n, p \in \N$ be arbitrary, and suppose $n \ge \map \psi {m, p}$.

The following inequalities hold:

$n \ge \map {\psi_x} {\paren {2 p + 2} \size {\ell_{m,0}} + 2 p + 1}$
$n \ge \map {\psi_y} {\paren {2 p + 2} \size {k_{m,0}} + 4 p + 3}$

And thus:

$\size {a_{\map {\psi_x} {m, n}} - x_m} < \dfrac 1 {\paren {2 p + 2} \size {\ell_{m,0}} + 2 p + 2} = \dfrac 1 {\paren {2 p + 2} \paren {\size {\ell_{m,0}} + 1}}$
$\size {b_{\map {\psi_y} {m, n}} - y_m} < \dfrac 1 {\paren {2 p + 2} \size {k_{m,0}} + 4 p + 4} = \dfrac 1 {\paren {2 p + 2} \paren {\size {k_{m,0}} + 2}}$

We also have:

$\size {x_m - k_{m,0}} < 1$
$\size {y_m - \ell_{m,0}} < 1$

so it follows that:

$\size {x_m} < \size {k_{m,0}} + 1$
$\size {y_m} < \size {\ell_{m,0}} + 1$

Finally, we also have:

$\size {a_{\map {\phi_x} {m, n}} - x_m} < \dfrac 1 {q + 1} \le 1$

for some $q \in \N$, so:

$\size {a_{\map {\phi_x} {m, n}}} < \size {x_m} + 1 < \size {k_{m,0}} + 2$


Then:

\(\ds \size {a'_{\map \pi {m, n} } b'_{\map \pi {m, n} } - x_m y_m}\) \(=\) \(\ds \size {a_{\map {\phi_x} {m, n} } b_{\map {\phi_y} {m, n} } - x_m y_m}\) Definition of $\sequence {a'_k}$ and $\sequence {b'_k}$
\(\ds \) \(=\) \(\ds \size {a_{\map {\phi_x} {m, n} } b_{\map {\phi_y} {m, n} } - a_{\map {\phi_x} {m, n} } y_m + a_{\map {\phi_x} {m, n} } y_m - x_m y_m}\)
\(\ds \) \(\le\) \(\ds \size {a_{\map {\phi_x} {m, n} } b_{\map {\phi_y} {m, n} } - a_{\map {\phi_x} {m, n} } y_m} + \size {a_{\map {\phi_x} {m, n} } y_m - x_m y_m}\) Triangle Inequality for Real Numbers
\(\ds \) \(=\) \(\ds \size {a_{\map {\phi_x} {m, n} } } \size {b_{\map {\phi_y} {m, n} } - y_m} + \size {y_m} \size {a_{\map {\phi_x} {m, n} } - x_m}\) Absolute Value Function is Completely Multiplicative
\(\ds \) \(<\) \(\ds \paren {\size {k_{m,0} } + 2} \dfrac 1 {\paren {2 p + 2} \paren {\size {k_{m,0} } + 2} } + \paren {\size {\ell_{m,0} } + 1} \dfrac 1 {\paren {2 p + 2} \paren {\size {\ell_{m,0} } + 1} }\) Inequalities above
\(\ds \) \(=\) \(\ds \dfrac 1 {2 p + 2} + \dfrac 1 {2 p + 2}\)
\(\ds \) \(=\) \(\ds \dfrac 1 {p + 1}\)


Thus, the conditions are satisfied to apply Computable Real Sequence iff Limits of Computable Rational Sequences.

$\blacksquare$