Product on Left with Idempotent Element under Left Self-Distributive Operation is Idempotent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be an algebraic structure.

Let $\circ$ be left self-distributive.

Let $a \in S$ be an idempotent element of $\struct {S, \circ}$.


Then for all $b \in S$, $b \circ a$ is an idempotent element of $\struct {S, \circ}$


Proof

Let $a \in S$ be an idempotent element of $\struct {S, \circ}$.

We have:

\(\ds \forall b \in S: \, \) \(\ds \paren {b \circ a} \circ \paren {b \circ a}\) \(=\) \(\ds b \circ \paren {a \circ a}\) Definition of Left Self-Distributive Operation
\(\ds \) \(=\) \(\ds b \circ a\) Definition of Idempotent Element

The result follows by definition of idempotent element.

$\blacksquare$


Sources