Product on Right with Idempotent Element under Right Self-Distributive Operation is Idempotent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be an algebraic structure.

Let $\circ$ be right self-distributive.

Let $a \in S$ be an idempotent element of $\struct {S, \circ}$.


Then for all $b \in S$, $a \circ b$ is an idempotent element of $\struct {S, \circ}$


Proof

Let $a \in S$ be an idempotent element of $\struct {S, \circ}$.

We have:

\(\ds \forall b \in S: \, \) \(\ds \paren {a \circ b} \circ \paren {a \circ b}\) \(=\) \(\ds \paren {a \circ a} \circ b\) Definition of Right Self-Distributive Operation
\(\ds \) \(=\) \(\ds a \circ b\) Definition of Idempotent Element

The result follows by definition of idempotent element.

$\blacksquare$


Sources