Recurrence Relation for Digamma Function

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \psi {z + 1} = \map \psi z + \dfrac 1 z$

where:

$\psi$ denotes the digamma function
$z \in \C \setminus \Z_{\le 0}$.


Proof

\(\ds \map \Gamma {z + 1}\) \(=\) \(\ds z \map \Gamma z\) Gamma Difference Equation
\(\ds \leadsto \ \ \) \(\ds \map \ln {\map \Gamma {z + 1} }\) \(=\) \(\ds \map \ln {z \map \Gamma z}\) applying $\ln$ on both sides
\(\ds \) \(=\) \(\ds \ln z + \map \ln {\map \Gamma z}\) Sum of Logarithms
\(\ds \leadsto \ \ \) \(\ds \dfrac \d {\d z} \map \ln {\map \Gamma {z + 1} }\) \(=\) \(\ds \dfrac \d {\d z} \ln z + \dfrac \d {\d z} \map \ln {\map \Gamma z}\) differentiation with respect to $z$
\(\ds \leadsto \ \ \) \(\ds \dfrac {\map {\Gamma'} {z + 1} } {\map \Gamma {z + 1} }\) \(=\) \(\ds \dfrac 1 z + \dfrac {\map {\Gamma'} z} {\map \Gamma z}\) Derivative of Natural Logarithm Function, Chain Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \map \psi {z + 1}\) \(=\) \(\ds \map \psi z + \dfrac 1 z\) Definition of Digamma Function

$\blacksquare$


Also see


Sources