Right Zero Divisor of Commutative Ring is Left Zero Divisor

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a commutative ring.

Let $x \in R$ be a right zero divisor of $R$.


Then $x$ is also a left zero divisor of $R$.


Proof

Let $x \in R$ be a right zero divisor of $R$.

Let $0_R$ denote the zero of $R$.

Then:

\(\ds \exists y \in R^*: \, \) \(\ds x \circ y\) \(=\) \(\ds 0_R\) Definition of Left Zero Divisor
\(\ds \leadsto \ \ \) \(\ds y \circ x\) \(=\) \(\ds 0_R\) Definition of Commutative Ring

Hence $x$ is a left zero divisor of $R$ by definition.

$\blacksquare$


Sources