Second Chebyshev Function is Theta of x

From ProofWiki
Jump to navigation Jump to search

Theorem

We have:

$\map \psi x = \map \Theta x$

where:

$\Theta$ is $\Theta$ notation
$\psi$ is the second Chebyshev function.


Proof

We show that:

$\map \psi x = \map \OO x$

and:

$x = \map \OO {\map \psi x}$

where $\OO$ denotes big-$\OO$ notation.


Note that:

\(\ds \sum_{n \mathop \le x} \map \psi {\frac x n} - 2 \sum_{n \mathop \le x/2} \map \psi {\frac {\frac x 2} n}\) \(=\) \(\ds x \ln x - x - 2 \paren {\frac x 2 \ln \frac x 2 - \frac x 2} + \map \OO {\map \ln {x + 1} }\) Order of Second Chebyshev Function, Sum of Big-O Estimates
\(\ds \) \(=\) \(\ds x \ln x - x \map \ln {\frac x 2} + \map \OO {\map \ln {x + 1} }\)
\(\ds \) \(=\) \(\ds x \ln 2 + \map \OO {\map \ln {x + 1} }\) Difference of Logarithms

Note that:

\(\ds \sum_{n \mathop \le x/2} \map \psi {\frac {\frac x 2} n}\) \(=\) \(\ds \sum_{n \mathop \le x/2} \map \psi {\frac x {2 n} }\)
\(\ds \) \(=\) \(\ds \sum_{m \mathop \le x, \, \text {$m$ even} } \map \psi {\frac x m}\)

Clearly we have:

$\ds \sum_{n \mathop \le x} \map \psi {\frac x n} = \sum_{m \mathop \le x, \, \text {$m$ odd} } \map \psi {\frac x m} + \sum_{m \mathop \le x, \, \text {$m$ even} } \map \psi {\frac x m}$

So:

\(\ds \sum_{n \mathop \le x} \map \psi {\frac x n} - 2 \sum_{n \mathop \le x/2} \map \psi {\frac {\frac x 2} n}\) \(=\) \(\ds \paren {\sum_{n \mathop \le x} \map \psi {\frac x n} - \sum_{n \mathop \le x/2} \map \psi {\frac {\frac x 2} n} } - \sum_{n \mathop \le x/2} \map \psi {\frac {\frac x 2} n}\)
\(\ds \) \(=\) \(\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m}\)

From Second Chebyshev Function is Increasing:

$\map \psi {\dfrac x n} - \map \psi {\dfrac x m} \ge 0$

when $n < m$.

Suppose that $\floor x$ is an odd integer.

Then we have:

\(\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m}\) \(=\) \(\ds \paren {\map \psi x + \map \psi {x/3} + \cdots + \map \psi {\frac x {\floor x} } } - \paren {\map \psi {x/2} + \map \psi {x/4} + \cdots + \map \psi {\frac x {\floor x - 1} } }\)
\(\ds \) \(=\) \(\ds \paren {\map \psi x - \map \psi {x/2} } + \paren {\map \psi {x/3} - \map \psi {x/4} } + \cdots + \paren {\map \psi {\frac x {\floor x - 2} } - \map \psi {\frac x {\floor x - 1} } } + \map \psi {\frac x {\floor x} }\)
\(\ds \) \(\ge\) \(\ds \map \psi x - \map \psi {x/2} + \map \psi {\frac x {\floor x} }\) Second Chebyshev Function is Increasing
\(\ds \) \(\ge\) \(\ds \map \psi x - \map \psi {x/2}\)

Similarly, if $\floor x$ is a even integer, we have:

\(\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m}\) \(=\) \(\ds \paren {\map \psi x - \map \psi {x/2} } + \paren {\map \psi {x/3} - \map \psi {x/4} } + \cdots + \paren {\map \psi {\frac x {\floor x - 1} } - \map \psi {\frac x {\floor x} } }\)
\(\ds \) \(\ge\) \(\ds \map \psi x - \map \psi {x/2}\) Second Chebyshev Function is Increasing

We now show that:

$\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m} = \map \OO x$

From the definition of big-$\OO$ notation, there exists some $x_1 \in \R$ and positive real number $C$ such that:

$\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m} \le x \ln 2 + C \map \ln {x + 1}$

for $x \ge x_1$.

Then we have:

\(\ds x \ln 2 + C \map \ln {x + 1}\) \(\le\) \(\ds x \ln 2 + C \map \ln {2 x}\)
\(\ds \) \(=\) \(\ds x \ln 2 + C \ln 2 + C \ln x\) Logarithm is Strictly Increasing

As shown in Order of Natural Logarithm Function, for $x \ge 1$ we have:

$C \ln x \le C x$

Let:

$x_0 = \max \set {x_1, 1}$

So for $x \ge x_0$, we have:

\(\ds x \ln 2 + C \ln 2 + C \ln x\) \(=\) \(\ds x \paren {C + \ln 2} + C \ln 2\)
\(\ds \) \(\le\) \(\ds x \paren {C + \paren {C + 1} \ln 2}\) since $x \ge 1$

Let:

$A = C + \paren {C + 1} \ln 2$

So, for $x \ge x_0$ we have:

$0 \le \map \psi x - \map \psi {x/2} \le A x$

So, for $x \ge 2^{k - 1} x_0$, we have:

$0 \le \map \psi {\dfrac x {2^{k - 1} } } - \map \psi {\dfrac x {2^k} } \le \dfrac {A x} {2^{k - 1} }$

Note that for $x < 2$, we have:

$\map \psi x = 0$

so for:

$k \ge \dfrac {\ln x} {\ln 2}$

we have:

$\map \psi {\dfrac x {2^{k - 1} } } - \map \psi {\dfrac x {2^k} } = 0$

Set:

$N = \floor {\dfrac {\ln x} {\ln 2} } + 1$

So we have, for $x \ge 2^{N - 1} x_0$:

\(\ds \map \psi x\) \(=\) \(\ds \sum_{k \mathop = 1}^N \paren {\map \psi {\frac x {2^{k - 1} } } - \map \psi {\frac x {2^k} } }\)
\(\ds \) \(\le\) \(\ds \sum_{k \mathop = 1}^N \frac {A x} {2^{k - 1} }\)
\(\ds \) \(\le\) \(\ds A x \sum_{k \mathop = 0}^\infty \frac 1 {2^k}\)
\(\ds \) \(=\) \(\ds 2 A x\) Sum of Infinite Geometric Progression

So by the definition of big-O notation, we have:

$\map \psi x = \map \OO x$

Suppose that $\floor x$ is an odd integer.

Then:

\(\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m}\) \(=\) \(\ds \paren {\map \psi x + \map \psi {x/3} + \cdots + \map \psi {\frac x {\floor x} } } - \paren {\map \psi {x/2} + \map \psi {x/4} + \cdots + \map \psi {\frac x {\floor x - 1} } }\)
\(\ds \) \(=\) \(\ds \map \psi x + \paren {-\map \psi {x/2} + \map \psi {x/3} } + \paren {-\map \psi {x/4} + \map \psi {x/5} } + \cdots + \paren {-\map \psi {\frac x {\floor x - 1} } + \map \psi {\frac x {\floor x} } }\)
\(\ds \) \(\le\) \(\ds \map \psi x\) Second Chebyshev Function is Increasing

Similarly if $\floor x$ is an even integer, we have:

\(\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m}\) \(=\) \(\ds \paren {\map \psi x - \map \psi {x/2} } + \paren {\map \psi {x/3} - \map \psi {x/4} } + \cdots + \paren {\map \psi {\frac x {\floor x - 1} } - \map \psi {\frac x {\floor x} } }\)
\(\ds \) \(=\) \(\ds \map \psi x + \paren {-\map \psi {x/2} + \map \psi {x/3} } + \cdots + \paren {-\map \psi {\frac x {\floor x - 2} } + \map \psi {\frac x {\floor x - 1} } } - \map \psi {\frac x {\floor x} }\)
\(\ds \) \(\le\) \(\ds \map \psi x - \map \psi {\frac x {\floor x} }\)
\(\ds \) \(\le\) \(\ds \map \psi x\) Second Chebyshev Function is Increasing

Since:

$\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m} = x \ln 2 + \map \OO {\map \ln {x + 1} }$

From the definition of big-$\OO$ notation, there exists a positive real number $C$ and $x_2 \in \R$ such that:

$\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m} \ge x \ln 2 - C \map \ln {x + 1}$

for $x \ge x_2$.

Without loss of generality assume that $C > 1$.

We then have for $x \ge \max \set {x_2, 1}$:

\(\ds x \ln 2 - C \map \ln {x + 1}\) \(\ge\) \(\ds x \ln 2 - C \map \ln {2 x}\)
\(\ds \) \(=\) \(\ds x \ln 2 - C \map \ln 2 - C \map \ln x\) Sum of Logarithms
\(\ds \) \(\ge\) \(\ds x \ln 2 - C \map \ln 2 - x^{1/C}\) Order of Natural Logarithm Function

We show that for sufficiently large $x$ we have:

$x \ln 2 - x^{1/C} \ge \dfrac {\ln 2} 2 x$

This inequality holds if and only if:

$\dfrac {\ln 2} 2 \ge x^{\dfrac 1 C - 1}$

That is:

$x^{1 - \dfrac 1 C} \ge \dfrac 2 {\ln 2}$

Since $C > 1$, we have:

$1 - \dfrac 1 C > 0$

and so:

$\paren {1 - \dfrac 1 C} \ln x \ge \map \ln {\dfrac 2 {\ln 2} }$

That is:

$x \ge \map \exp {\dfrac {\map \ln {\frac 2 {\ln 2} } } {1 - \frac 1 C} } = x_3$

Then for $x \ge \max \set {x_3, x_2, 1}$, we have:

$x \ln 2 - C \ln 2 - x^{1/C} \ge x \dfrac {\ln 2} 2 - C \ln 2$

If also $x \ge 4 C$, we have:

$x \dfrac {\ln 2} 2 - C \ln 2 \ge x \dfrac {\ln 2} 4$

Let:

$x_4 = \max \set {x_3, x_2, 4 C}$

Then for $x \ge x_4$, we have:

$\ds \sum_{m \mathop \le x, \, m \text { odd} } \map \psi {\frac x m} - \sum_{m \mathop \le x, \, m \text { even} } \map \psi {\frac x m} \ge x \frac {\ln 2} 4$

So:

$\map \psi x \ge x \dfrac {\ln 2} 4$

for $x \ge x_4$.

That is:

$\dfrac 4 {\ln 2} \map \psi x \ge x$

From the definition of big-$\OO$ notation, we have:

$x = \map \OO {\map \psi x}$

Since also:

$\map \psi x = \map \OO x$

we have:

$\map \psi x = \map \Theta x$

$\blacksquare$