Second Order ODE/y'' + 2 x (y')^2 = 0

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y + 2 x \paren {y'}^2 = 0$

has the general solution:

$C_1 \map \arctan {C_1 x} = y + C_2$


Proof

The proof proceeds by using Solution of Second Order Differential Equation with Missing Dependent Variable.

Substitute $p$ for $y'$ in $(1)$ and rearranging:

\(\ds \dfrac {\d p} {\d x}\) \(=\) \(\ds -2 x p^2\)
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d p} {p^2}\) \(=\) \(\ds -2 \int x \rd x\) Solution to Separable Differential Equation
\(\ds \leadsto \ \ \) \(\ds -\frac 1 p\) \(=\) \(\ds -x^2 + k^2\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d x} {\d y}\) \(=\) \(\ds x^2 + k^2\) substituting back for $p$
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d x} {x^2 + k^2}\) \(=\) \(\ds \int \rd y\) Solution to Separable Differential Equation
\(\ds \leadsto \ \ \) \(\ds \frac 1 k \map \arctan {\frac x k}\) \(=\) \(\ds y + C_2\) Primitive of $\dfrac 1 {x^2 + a^2}$
\(\ds \leadsto \ \ \) \(\ds C_1 \map \arctan {C_1 x}\) \(=\) \(\ds y + C_2\) setting $C_1 = \dfrac 1 k$

$\blacksquare$


Sources