Second Order ODE/y y'' + (y')^2 = 0

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y y + \paren {y'}^2 = 0$

has the general solution:

$y^2 = C_1 x + C_2$


Proof

Using Solution of Second Order Differential Equation with Missing Independent Variable, $(1)$ can be expressed as:

\(\ds y p \frac {\d p} {\d y} + p^2\) \(=\) \(\ds 0\) where $p = \dfrac {\d y} {\d x}$
\(\ds \leadsto \ \ \) \(\ds y \rd p + p \rd y\) \(=\) \(\ds 0\) multiplying by $\dfrac {\d y} p$
\(\ds \leadsto \ \ \) \(\ds p y\) \(=\) \(\ds C\) First Order ODE: $y \rd x + x \rd y = 0$
\(\ds \leadsto \ \ \) \(\ds y \dfrac {\d y} {\d x}\) \(=\) \(\ds C\) substituting $p = \dfrac {\d y} {\d x}$
\(\ds \leadsto \ \ \) \(\ds y^2\) \(=\) \(\ds 2 C x + C_2\) First Order ODE: $y \dfrac {\d y} {\d x} = k$
\(\ds \) \(=\) \(\ds C_1 x + C_2\) reassigning constant

$\blacksquare$


Sources