Smallest Field/Cayley Tables

From ProofWiki
Jump to navigation Jump to search

Cayley Tables for the Smallest Field

The smallest field can be completely described by showing its Cayley tables.


In purely abstract form as $\struct {\set {0_R, 1_R}, +, \circ}$:

$\begin{array} {r|rr}

\struct {\set {0_R, 1_R}, +} & 0_R & 1_R \\ \hline 0_R & 0_R & 1_R \\ 1_R & 1_R & 0_R \\ \end{array} \qquad \begin{array} {r|rr} \struct {\set {0_R, 1_R}, \circ} & 0_R & 1_R \\ \hline 0_R & 0_R & 0_R \\ 1_R & 0_R & 1_R \\ \end{array}$


Ring of Integers Modulo $2$

It can also be expressed as the ring of integers modulo $2$ $\struct {\Z_2, +_2, \times_2}$:

$\begin{array} {r|rr}

\struct {\Z_2, +_2} & \eqclass 0 2 & \eqclass 1 2 \\ \hline \eqclass 0 2 & \eqclass 0 2 & \eqclass 1 2 \\ \eqclass 1 2 & \eqclass 1 2 & \eqclass 0 2 \\ \end{array} \qquad \begin{array}{r|rr} \struct {\Z_2, \times_2} & \eqclass 0 2 & \eqclass 1 2 \\ \hline \eqclass 0 2 & \eqclass 0 2 & \eqclass 0 2 \\ \eqclass 1 2 & \eqclass 0 2 & \eqclass 1 2 \\ \end{array}$


They can be presented more simply as:

$\begin{array}{r|rr}

+ & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array} \qquad \begin{array}{r|rr} \times & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$


Parity Ring

It can also be expressed in terms of integer parity:

$\begin{array}{r|rr}

+ & \text{even} & \text{odd} \\ \hline \text{even} & \text{even} & \text{odd} \\ \text{odd} & \text{odd} & \text{even} \\ \end{array} \qquad \begin{array}{r|rr} \times & \text{even} & \text{odd} \\ \hline \text{even} & \text{even} & \text{even} \\ \text{odd} & \text{even} & \text{odd} \\ \end{array}$