Square of Vector Cross Product/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf a$ and $\mathbf b$ be vectors in a vector space $\mathbf V$ of $3$ dimensions.

Let $\mathbf a \times \mathbf b$ denote the vector cross product of $\mathbf a$ with $\mathbf b$.


Then:

$\paren {\mathbf a \times \mathbf b}^2 = \mathbf a^2 \mathbf b^2 - \paren {\mathbf a \cdot \mathbf b}^2$

where:

$\paren {\mathbf a \times \mathbf b}^2$ denotes the square of $\mathbf a \times \mathbf b$
$\mathbf a \cdot \mathbf b$ denotes the dot product of $\mathbf a \times \mathbf b$.


Proof

\(\ds \paren {\mathbf a \times \mathbf b}^2\) \(=\) \(\ds \paren {\mathbf a \times \mathbf b} \cdot \paren {\mathbf a \times \mathbf b}\) Definition of Square of Vector Quantity
\(\ds \) \(=\) \(\ds \paren {\mathbf a \cdot \mathbf a} \paren {\mathbf b \cdot \mathbf b} - \paren {\mathbf a \cdot \mathbf b} \paren {\mathbf b \cdot \mathbf a}\) Dot Product of Vector Cross Products
\(\ds \) \(=\) \(\ds \paren {\mathbf a \cdot \mathbf a} \paren {\mathbf b \cdot \mathbf b} - \paren {\mathbf a \cdot \mathbf b} \paren {\mathbf a \cdot \mathbf b}\) Dot Product Operator is Commutative
\(\ds \) \(=\) \(\ds \mathbf a^2 \mathbf b^2 - \paren {\mathbf a \cdot \mathbf b} \paren {\mathbf a \cdot \mathbf b}\) Definition of Square of Vector Quantity
\(\ds \) \(=\) \(\ds \mathbf a^2 \mathbf b^2 - \paren {\mathbf a \cdot \mathbf b}^2\) Definition of Square Function


Sources