Subsemigroup/Examples/2x2 Matrices with One Non-Zero Entry
Jump to navigation
Jump to search
Example of Subsemigroup
Let $\struct {S, \times}$ be the semigroup formed by the set of order $2$ square matrices over the real numbers $R$ under (conventional) matrix multiplication.
Let $T$ be the subset of $S$ consisting of the matrices of the form $\begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$ for $x \in \R$.
Then $\struct {T, \times}$ is a subsemigroup of $\struct {S, \times}$.
Proof
From the Subsemigroup Closure Test it is sufficient to demonstrate that $\struct {T, \times}$ is closed.
Let $A = \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} y & 0 \\ 0 & 0 \end{bmatrix}$.
Then:
\(\ds A B\) | \(=\) | \(\ds \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y & 0 \\ 0 & 0 \end{bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin{bmatrix} x y + 0 \times 0 & x \times 0 + 0 \times 0 \\ 0 \times y + 0 \times 0 & 0 \times 0 + 0 \times 0 \end{bmatrix}\) | Definition of Matrix Product (Conventional) | |||||||||||
\(\ds \) | \(=\) | \(\ds \begin{bmatrix} x y & 0 \\ 0 & 0 \end{bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds T\) |
Hence the result.
$\blacksquare$
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 32$ Identity element and inverses