Sum of Reciprocals of Squares Alternating in Sign/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \dfrac {\pi^2} {12}\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \dfrac {\paren {-1}^{n + 1} } {n^2}\)
\(\ds \) \(=\) \(\ds \frac 1 {1^2} - \frac 1 {2^2} + \frac 1 {3^2} - \frac 1 {4^2} + \cdots\)


Proof

\(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n + 1} } {n^2}\) \(=\) \(\ds \paren {-1}^2 \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} n^{-2}\)
\(\ds \) \(=\) \(\ds \map \eta 2\) Definition of Dirichlet Eta Function, and $\paren {-1}^2 = 1$
\(\ds \) \(=\) \(\ds \paren {1 - 2^{1 - 2} } \map \zeta 2\) Riemann Zeta Function in terms of Dirichlet Eta Function
\(\ds \) \(=\) \(\ds \frac 1 2 \map \zeta 2\)
\(\ds \) \(=\) \(\ds \frac {\pi^2} {12}\) Basel Problem

$\blacksquare$