Sum of Sequence of Harmonic Numbers/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{k \mathop = 1}^n H_k = \paren {n + 1} H_n - n$

where $H_k$ denotes the $k$th harmonic number.


Proof

From Sum over k to n of k Choose m by kth Harmonic Number:

$\ds \sum_{k \mathop = 1}^n \binom k m H_k = \binom {n + 1} {m + 1} \paren {H_{n + 1} - \frac 1 {m + 1} }$

Setting $m = 0$:

\(\ds \sum_{k \mathop = 1}^n \binom k 0 H_k\) \(=\) \(\ds \binom {n + 1} {0 + 1} \paren {H_{n + 1} - \frac 1 {0 + 1} }\)
\(\ds \leadsto \ \ \) \(\ds \sum_{j \mathop = 1}^n H_k\) \(=\) \(\ds \paren {n + 1} \paren {H_{n + 1} - 1}\) Binomial Coefficient with $0$, Binomial Coefficient with $1$
\(\ds \) \(=\) \(\ds \paren {n + 1} \paren {H_n + \frac 1 {n + 1} - 1}\) Definition of Harmonic Number
\(\ds \) \(=\) \(\ds \paren {n + 1} H_n + \paren {n + 1} \frac 1 {n + 1} - \paren {n + 1} 1\)
\(\ds \) \(=\) \(\ds \paren {n + 1} H_n + 1 - \paren {n + 1}\)
\(\ds \) \(=\) \(\ds \paren {n + 1} H_n - n\)

$\blacksquare$


Sources