Sum of Trigamma of n plus 3 over n plus 2

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{n \mathop = 0}^\infty \dfrac {\map {\psi_1} {n + 3} } {\paren {n + 2} }\) \(=\) \(\ds \dfrac {\map {\psi_1} 3} 2 + \dfrac {\map {\psi_1} 4} 3 + \dfrac {\map {\psi_1} 5} 4 + \dfrac {\map {\psi_1} 6} 5 + \cdots\)
\(\ds \) \(=\) \(\ds \map \zeta 3 - \map \zeta 2 + 1\)

where:

$\map {\psi_1} n$ is the trigamma function of $n$
$\map \zeta 2$ is the Riemann $\zeta$ function of $2$
$\map \zeta 3$ is Apéry's constant: the Riemann $\zeta$ function of $3$.


Proof

\(\ds \sum_{n \mathop = 0}^\infty \dfrac {\map {\psi_1} {n + 3} } {\paren {n + 2} }\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \dfrac {\map {\psi_1} {n + 1} } n - \map {\psi_1} 2\) $n \to n - 2$
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \dfrac {\map {\psi_1} {n + 1} } n - \paren {\map {\psi_1} 1 - 1}\) Recurrence Relation for Polygamma Function: $\map {\psi_1} 2 = \map {\psi_1} 1 - 1$
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \dfrac {\map {\psi_1} {n + 1} } n - \map \zeta 2 + 1\) Polygamma Function in terms of Hurwitz Zeta Function: $\map {\psi_1} 1 = \map \Gamma 2 \map \zeta {2, 1}$
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \paren {-\int_0^1 \frac {x^{\paren {n + 1} - 1} \ln x} {n \paren {1 - x} } \rd x} - \map \zeta 2 + 1\) Integral Form of Polygamma Function: $\ds \map {\psi_1} z = -\int_0^1 \frac {u^{z - 1} \ln u} {1 - u} \rd u$
\(\ds \) \(=\) \(\ds \int_0^1 \paren {-\sum_{n \mathop = 1}^\infty \frac {x^n} n} \frac {\ln x} {\paren {1 - x} } \rd x - \map \zeta 2 + 1\) Tonelli's Theorem
\(\ds \) \(=\) \(\ds \int_0^1 \frac {\map \ln {1 - x} \ln x} {\paren {1 - x} } \rd x - \map \zeta {2} + 1\) Power Series Expansion for Logarithm of $1 - x$: $\ds \map \ln {1 - x} = -\sum_{n \mathop = 1}^\infty \frac {x^n} n$
\(\ds \) \(=\) \(\ds \map \zeta 3 - \map \zeta 2 + 1\) Definite Integral: $\ds \int_0^1 \dfrac {\ln x \map \ln {1 - x} } {\paren {1 - x} } \rd x$

$\blacksquare$


Also see


Sources