Definite Integral from 0 to 1 of Logarithm of x by Logarithm of One minus x over One minus x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^1 \dfrac {\ln x \map \ln {1 - x} } {\paren {1 - x} } \rd x = \map \zeta 3$

where $\map \zeta 3$ is Apéry's constant: the Riemann $\zeta$ function of $3$.


Proof 1

\(\ds \int_0^1 \dfrac {\ln x \map \ln {1 - x} } {\paren {1 - x} } \rd x\) \(=\) \(\ds \int_1^0 \dfrac {\map \ln {1 - u} \ln u } u \paren {-\rd u}\) $x \to \paren {1 - u}$ and $\rd x \to -\rd u$
\(\ds \) \(=\) \(\ds \int_0^1 \dfrac {\map \ln {1 - u} \ln u } u \rd u\) reversing limits of integration
\(\ds \) \(=\) \(\ds -\int_0^1 \frac {\ln u} u \paren {\sum_{n \mathop = 1}^\infty \frac {u^n} n}\) Power Series Expansion for $\map \ln {1 + x}$: Corollary
\(\ds \) \(=\) \(\ds -\int_0^1 \ln u \paren {\sum_{n \mathop = 1}^\infty \frac {u^{n - 1} } n}\)
\(\ds \) \(=\) \(\ds -\sum_{n \mathop = 1}^\infty \frac 1 n \paren {\int_0^1 u^{n - 1} \ln u \rd u}\) Fubini's Theorem
\(\ds \) \(=\) \(\ds \paren {-1}^2 \sum_{n \mathop = 1}^\infty \frac 1 n \paren {\frac {\map \Gamma 2} {\paren {\paren {n - 1} + 1}^2} }\) Definite Integral from $0$ to $1$ of $x^m \paren {\ln x}^n$
\(\ds \) \(=\) \(\ds 1! \sum_{n \mathop = 1}^\infty \frac 1 {n^3}\) Gamma Function Extends Factorial
\(\ds \) \(=\) \(\ds \map \zeta {3}\) Definition of Apéry's Constant

$\blacksquare$


Proof 2

With a view to expressing the primitive in the form:

\(\ds \int u \frac {\d v} {\d x} \rd x\) \(=\) \(\ds u v - \int v \frac {\d u} {\d x} \rd x\) Integration by Parts


let:

\(\ds u\) \(=\) \(\ds \ln x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac 1 x\) Derivative of $\ln x$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds \frac {\map \ln {1 - x} } {\paren {1 - x} }\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds - \frac 1 2 \paren {\map \ln {1 - x} }^2\) Primitive of Power


Then:

\(\ds \int_0^1 \frac {\map \ln {1 - x} \ln x } {\paren {1 - x} } \rd x\) \(=\) \(\ds \intlimits {\ln x \paren {-\frac 1 2 \paren {\map \ln {1 - x} }^2} } 0 1 + \frac 1 2 \int_0^1 \frac {\paren {\map \ln {1 - x} }^2} x \rd x\) Integration by Parts
\(\ds \) \(=\) \(\ds 0 + \frac 1 2 \int_0^1 \frac {\paren {\map \ln {1 - x} }^2} x \rd x\)
\(\ds \) \(=\) \(\ds \frac 1 2 \int_1^0 \frac {\paren {\map \ln u}^2} {1 - u} \paren {-\d u}\) $x \to \paren {1 - u}$ and $\rd x \to -\rd u$
\(\ds \) \(=\) \(\ds \frac 1 2 \int_0^1 \frac {\paren {-\map \ln u} \paren {-\map \ln u} } {1 - u} \rd u\) reversing limits of integration
\(\ds \) \(=\) \(\ds \frac 1 2 \int_0^1 \frac {\paren {\map \ln {\dfrac 1 u} }^{3 - 1} } {1 - u} \rd u\) Logarithm of Reciprocal
\(\ds \) \(=\) \(\ds \frac {\map \zeta 3 \map \Gamma 3} 2\) Integral Representation of Riemann Zeta Function in terms of Gamma Function: $\ds \map \zeta s \map \Gamma s = \int_0^1 \frac {\paren {\map \ln {\frac 1 u} }^{s - 1} } {1 - u} \rd u$
\(\ds \) \(=\) \(\ds \map \zeta 3\) Gamma Function of 3

$\blacksquare$