Symmetric Relation equals its Symmetric Closure

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR$ be a symmetric relation on a set $S$.

Let $\RR^\leftrightarrow$ be the symmetric closure of $\RR$.


Then:

$\RR = \RR^\leftrightarrow$


Proof

\(\ds \RR^\leftrightarrow\) \(=\) \(\ds \RR \cup \RR^{-1}\) Definition of Symmetric Closure
\(\ds \) \(=\) \(\ds \RR \cup \RR\) Inverse of Symmetric Relation is Symmetric
\(\ds \) \(=\) \(\ds \RR\) Set Union is Idempotent

$\blacksquare$