User:Caliburn/s/fa/Characterization of Separable Normed Vector Space

From ProofWiki
< User:Caliburn‎ | s‎ | fa
Jump to navigation Jump to search

Theorem

Let $\mathbb F \in \set {\R, \C}$.

Let $\struct {X, \norm \cdot}$ be a normed vector space over $\Bbb F$.


$(1): \quad$ $X$ is separable
$(2): \quad$ $S_X = \set {x \in X : \norm x = 1}$ is separable
$(3): \quad$ there exists a countable set $\set {x_n : n \in \N} \subseteq X$ such that the closed linear span of $\set {x_n : n \in \N}$ is $X$.


Proof

$(1)$ implies $(2)$

This is immediate from Subspace of Separable Metric Space is Separable.

$\Box$

$(2)$ implies $(3)$

Let $\mathcal S = \set {x_n : n \in \N}$ be a everywhere dense subset of $S_X$.

Let:

$M = \paren {\map \span {\mathcal S} }^-$

be the closed linear span of $\mathcal S$.

We show that $M = X$.

Clearly $0 \in M$, from Closed Linear Span is Closed Linear Subspace.

Let $x \in X \setminus \set 0$ and $\epsilon > 0$.

Then:

$\ds \frac x {\norm x} \in S_X$

Then there exists $x_j \in \mathcal S$ such that:

$\ds \norm {\frac x {\norm x} - x_j} < \frac \epsilon {\norm x}$

since $\mathcal S$ is everywhere dense in $S_X$.

Then:

$\ds \norm {x - \norm x x_j} < \epsilon$

with:

$\norm x x_j \in \map \span {\mathcal S}$

Since $\epsilon > 0$ was arbitrary we have:

$x \in M$

from Condition for Point being in Closure.

So:

$M = X$

$\Box$

$(3)$ implies $(1)$

Let $\mathcal S = \set {x_n : n \in \N} \subseteq X$ be a countable set with closed linear span $X$.

First take $\Bbb F = \R$.

We show that:

$\ds {\span_\Q} \set {x_n : n \in \N} = \set {\sum_{i \mathop = 1}^n \alpha_i x_{n_i} : \alpha_i \in \Q \text { and } x_{n_i} \in \mathcal S \text { for each } i}$ is everywhere dense in $X$.

We will then show that:

${\span_\Q} \set {x_n : n \in \N}$ is countable.

Clearly $0 \in \paren { {\span_\Q} \set {x_n : n \in \N} }^-$ from Closed Linear Span is Closed Linear Subspace.

Let $x \in X$ and $\epsilon > 0$.

Since the closed linear span of $\set {x_n : n \in \N}$ is $X$, there exists $x_{n_j} \in \set {x_n :n \in \N}$ and $\alpha_j \in \R$ such that:

$\ds \norm {x - \sum_{j = 1}^n \alpha_j x_{n_j} } < \frac \epsilon 2$

From Rationals are Everywhere Dense in Reals, for each $j$ there exists $\beta_j \in \R$ such that:

$\ds \size {\beta_j - \alpha_j} < \frac \epsilon {2 n \norm {x_{n_j} } }$

Then, we have:

\(\ds \norm {x - \sum_{j \mathop = 1}^n \beta_j x_{n_j} }\) \(=\) \(\ds \norm {x - \sum_{j \mathop = 1}^n \beta_j x_{n_j} + \sum_{j \mathop = 1}^n \alpha_j x_{n_j} - \sum_{j \mathop = 1}^n \alpha_j x_{n_j} }\)
\(\ds \) \(\le\) \(\ds \norm {x - \sum_{j \mathop = 1}^n \beta_j x_{n_j} } + \norm {\sum_{j \mathop = 1}^n \paren {\beta_j - \alpha_j} x_{n_j} }\) applying the triangle inequality
\(\ds \) \(<\) \(\ds \frac \epsilon 2 + \sum_{j \mathop = 1}^n \size {\beta_j - \alpha_j} \norm {x_{n_j} }\) applying the triangle inequality $n$ times and using positive homogeneity
\(\ds \) \(<\) \(\ds \frac \epsilon 2 + \sum_{j \mathop = 1}^n \frac \epsilon {2 n \norm {x_{n_j} } } \norm {x_{n_j} }\)
\(\ds \) \(=\) \(\ds \frac \epsilon 2 + \frac \epsilon {2 n} \sum_{j \mathop = 1}^n 1\)
\(\ds \) \(=\) \(\ds \frac \epsilon 2 + \frac \epsilon 2\)
\(\ds \) \(=\) \(\ds \epsilon\)

So from Condition for Point being in Closure, we have:

$x \in \paren { {\span_\Q} \set {x_n : n \in \N} }^-$

Since $x \in X$ was arbitrary, we have that:

${\span_\Q} \set {x_n : n \in \N}$ is everywhere dense.


Now take $\Bbb F = \C$.

We show that:

$\ds {\span_{\Q \sqbrk i} } \set {x_n : n \in \N} = \set {\sum_{i \mathop = 1}^n \alpha_i x_{n_i} : \alpha_i \in \Q \sqbrk i \text { and } x_{n_i} \in \mathcal S \text { for each } i}$

We will then show that:

${\span_{\Q \sqbrk i} } \set {x_n : n \in \N}$ is countable.