Absolutely Convergent Generalized Sum Converges to Supremum

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $V$ be a Banach space.


Let $\family {v_i}_{i \mathop \in I}$ be an indexed family of elements of $V$.

Let $\FF$ denote the set of finite subsets of $I$.


Let the generalized sum $\ds \sum_{i \mathop \in I} v_i$ converge absolutely to $c \in \R$.


Then:

$c = \sup \set{\ds \sum_{i \mathop \in F} \norm{v_i} : F \in \FF}$


Proof

Aiming for a contradiction, suppose:

$\exists E \in \FF : \ds \sum_{i \mathop \in E} \norm{v_i} > c$


Let:

$0 < \epsilon < \ds \sum_{i \mathop \in F} \norm{v_i} - c$


Let $F \in \FF$.

Let $E' = F \cup E$.

We have:

\(\ds \sum_{i \mathop \in E'} \norm{v_i}\) \(=\) \(\ds \sum_{i \mathop \in F} \norm{v_i} + \sum_{i \mathop \in E' \setminus F} \norm{v_i}\) Summation over Union of Disjoint Finite Index Sets
\(\ds \) \(\ge\) \(\ds \sum_{i \mathop \in F} \norm{v_i}\)
\(\ds \) \(>\) \(\ds c + \epsilon\) Summation over Union of Disjoint Finite Index Sets
\(\ds \leadsto \ \ \) \(\ds \epsilon\) \(<\) \(\ds \size{\sum_{i \mathop \in E'} \norm{v_i} - c}\)


Since $F$ was arbitrary, it follows:

$\forall F \in \FF : \exists E' \in \FF : E' \supseteq F$ and $\size{\ds \sum_{i \mathop \in E'} \norm{v_i} - c} > \epsilon$


This contradicts the hypothesis that $\ds \sum_{i \mathop \in I} v_i$ converges absolutely to $c \in \R$.


Hence:

$\forall E \in \FF : \ds \sum_{i \mathop \in E} \norm{v_i} \le c$


By definition of absolutely net convergence:

$\forall \epsilon \in \R_{\mathop > 0}: \exists F \in \FF : \forall E \in \FF : E \supseteq F \leadsto \ds \sum_{i \mathop \in E} \norm{v_i} \in \hointl {c - \epsilon} c$


From Characterizing Property of Supremum of Subset of Real Numbers:

$c = \sup \set{\ds \sum_{i \mathop \in F} \norm{v_i} : F \in \FF}$

$\blacksquare$