Axiom:Semiring Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {S, *, \circ}$ be an algebraic structure.


$\struct {S, *, \circ}$ is a semiring if and only if $\struct {S, *, \circ}$ satisfies the axioms

\((\text A 0)\)   $:$     \(\ds \forall a, b \in S:\) \(\ds a * b \in S \)      
\((\text A 1)\)   $:$     \(\ds \forall a, b, c \in S:\) \(\ds \paren {a * b} * c = a * \paren {b * c} \)      
\((\text M 0)\)   $:$     \(\ds \forall a, b \in S:\) \(\ds a \circ b \in S \)      
\((\text M 1)\)   $:$     \(\ds \forall a, b, c \in S:\) \(\ds \paren {a \circ b} \circ c = a \circ \paren {b \circ c} \)      
\((\text D)\)   $:$     \(\ds \forall a, b, c \in S:\) \(\ds a \circ \paren {b * c} = \paren {a \circ b} * \paren {a \circ c} \)      
\(\ds \paren {a * b} \circ c = \paren {a \circ c} * \paren {b \circ c} \)      

These criteria are called the semiring axioms.


Also see