Category:Internal Group Direct Products

From ProofWiki
Jump to navigation Jump to search

This category contains results about Internal Group Direct Products.
Definitions specific to this category can be found in Definitions/Internal Group Direct Products.

Let $\struct {H, \circ {\restriction_H} }$ and $\struct {K, \circ {\restriction_K} }$ be subgroups of a group $\struct {G, \circ}$

where $\circ {\restriction_H}$ and $\circ {\restriction_K}$ are the restrictions of $\circ$ to $H, K$ respectively.


Definition by Isomorphism

The group $\struct {G, \circ}$ is the internal group direct product of $H$ and $K$ if and only if the mapping $\phi: H \times K \to G$ defined as:

$\forall h \in H, k \in K: \map \phi {h, k} = h \circ k$

is a group isomorphism from the (external) group direct product $\struct {H, \circ {\restriction_H} } \times \struct {K, \circ {\restriction_K} }$ onto $\struct {G, \circ}$.


Definition by Subset Product

The group $\struct {G, \circ}$ is the internal group direct product of $H$ and $K$ if and only if:

$(1): \quad \struct {H, \circ {\restriction_H} }$ and $\struct {K, \circ {\restriction_K} }$ are both normal subgroups of $\struct {G, \circ}$
$(2): \quad G$ is the subset product of $H$ and $K$, that is: $G = H \circ K$
$(3): \quad$ $H \cap K = \set e$ where $e$ is the identity element of $G$.