Category:Kernels of Linear Transformations

From ProofWiki
Jump to navigation Jump to search

This category contains results about Kernels of Linear Transformations.
Definitions specific to this category can be found in Definitions/Kernels of Linear Transformations.

Let $\phi: G \to H$ be a linear transformation where $G$ and $H$ are $R$-modules.

Let $e_H$ be the identity of $H$.


The kernel of $\phi$ is defined as:

$\map \ker \phi := \phi^{-1} \sqbrk {\set {e_H} }$

where $\phi^{-1} \sqbrk S$ denotes the preimage of $S$ under $\phi$.


In Vector Space

Let $\struct {\mathbf V, +, \times}$ be a vector space.

Let $\struct {\mathbf V', +, \times}$ be a vector space whose zero vector is $\mathbf 0'$.

Let $T: \mathbf V \to \mathbf V'$ be a linear transformation.


Then the kernel of $T$ is defined as:

$\map \ker T := T^{-1} \sqbrk {\set {\mathbf 0'} } = \set {\mathbf x \in \mathbf V: \map T {\mathbf x} = \mathbf 0'}$

Pages in category "Kernels of Linear Transformations"

This category contains only the following page.