Category:Lagrange Interpolation Formula

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Lagrange Interpolation Formula:

Theorem

Formulation 1

Let $\tuple {x_0, \ldots, x_n}$ and $\tuple {a_0, \ldots, a_n}$ be ordered tuples of real numbers such that $x_i \ne x_j$ for $i \ne j$.

Then there exists a unique polynomial $P \in \R \sqbrk X$ of degree at most $n$ such that:

$\map P {x_i} = a_i$ for all $i \in \set {0, 1, \ldots, n}$

Moreover $P$ is given by the formula:

$\ds \map P X = \sum_{j \mathop = 0}^n a_i \map {L_j} X$

where $\map {L_j} X$ is the $j$th Lagrange basis polynomial associated to the $x_i$.


Formulation 2

Let $f : \R \to \R$ be a real function.

Let $f$ have known values $y_i = \map f {x_i}$ for $n \in \set {0, 1, \ldots, n}$.

Let a value $y' = \map f {x'}$ be required to be estimated at some $x'$.

Then:

\(\ds y'\) \(\approx\) \(\ds \dfrac {y_1 \paren {x' - x_2} \paren {x' - x_3} \cdots \paren {x' - x_n} } {\paren {x_1 - x_2} \paren {x_1 - x_3} \cdots \paren {x_1 - x_n} }\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \dfrac {y_2 \paren {x' - x_1} \paren {x' - x_3} \cdots \paren {x' - x_n} } {\paren {x_2 - x_1} \paren {x_2 - x_3} \cdots \paren {x_2 - x_n} }\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \cdots\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \dfrac {y_n \paren {x' - x_1} \paren {x' - x_2} \cdots \paren {x' - x_{n - 1} } } {\paren {x_n - x_1} \paren {x_n - x_3} \cdots \paren {x_n - x_{n - 1} } }\)


Also known as

The Lagrange interpolation formula can also be styled as Lagrange's interpolation formula.


Also see


Source of Name

This entry was named for Joseph Louis Lagrange.


Source of Name

This entry was named for Joseph Louis Lagrange.

Subcategories

This category has only the following subcategory.